为提高大量程六维力传感器的灵敏度,设计了一种适用于机械臂末端的应变式传感器。该传感器采用十字梁式弹性体结构,通过优化应变梁结构和合理布置应变片等方式,使传感器在大量程条件下仍具有较高的刚度和灵敏度。使用有限元法分析验证...为提高大量程六维力传感器的灵敏度,设计了一种适用于机械臂末端的应变式传感器。该传感器采用十字梁式弹性体结构,通过优化应变梁结构和合理布置应变片等方式,使传感器在大量程条件下仍具有较高的刚度和灵敏度。使用有限元法分析验证了传感器应力分布的合理性,并根据最小二乘法标定原理对传感器进行解耦标定实验,实验结果表明:传感器静态性能良好,最小灵敏度为0.375 m V/N,满足使用要求。展开更多
In this work,we construct two efficient fully decoupled,linear,unconditionally stable numerical algorithms for the thermally coupled incompressible magnetohydrodynamic equations.Firstly,in order to obtain the desired ...In this work,we construct two efficient fully decoupled,linear,unconditionally stable numerical algorithms for the thermally coupled incompressible magnetohydrodynamic equations.Firstly,in order to obtain the desired algorithm,we introduce a scalar auxiliary variable(SAV)to get a new equivalent system.Secondly,by combining the pressure-correction method and the explicit-implicit method,we perform semi-discrete numerical algorithms of first and second order,respectively.Then,we prove that the obtained algorithms follow an unconditionally stable law in energy,and we provide a detailed implementation process,which we only need to solve a series of linear differential equations with constant coefficients at each time step.More importantly,with some powerful analysis,we give the order of convergence of the errors.Finally,to illustrate theoretical results,some numerical experiments are given.展开更多
文摘为提高大量程六维力传感器的灵敏度,设计了一种适用于机械臂末端的应变式传感器。该传感器采用十字梁式弹性体结构,通过优化应变梁结构和合理布置应变片等方式,使传感器在大量程条件下仍具有较高的刚度和灵敏度。使用有限元法分析验证了传感器应力分布的合理性,并根据最小二乘法标定原理对传感器进行解耦标定实验,实验结果表明:传感器静态性能良好,最小灵敏度为0.375 m V/N,满足使用要求。
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)Shanxi Provincial International Cooperation Base and Platform Project(202104041101019)Shanxi Province Natural Science Foundation(202203021211129)。
文摘In this work,we construct two efficient fully decoupled,linear,unconditionally stable numerical algorithms for the thermally coupled incompressible magnetohydrodynamic equations.Firstly,in order to obtain the desired algorithm,we introduce a scalar auxiliary variable(SAV)to get a new equivalent system.Secondly,by combining the pressure-correction method and the explicit-implicit method,we perform semi-discrete numerical algorithms of first and second order,respectively.Then,we prove that the obtained algorithms follow an unconditionally stable law in energy,and we provide a detailed implementation process,which we only need to solve a series of linear differential equations with constant coefficients at each time step.More importantly,with some powerful analysis,we give the order of convergence of the errors.Finally,to illustrate theoretical results,some numerical experiments are given.