期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于解耦机制的小地区短期负荷预测方法 被引量:14
1
作者 黎灿兵 刘梅 +1 位作者 单业才 唐涛南 《电网技术》 EI CSCD 北大核心 2008年第5期87-92,共6页
小地区短期负荷预测是电网企业精细化管理的重要手段。针对小地区短期负荷预测的特点,提出了基于解耦机制的误差分析模型和预测机制,将短期负荷预测分为负荷水平预测和标幺曲线预测两部分。小地区负荷结构单一,标幺曲线相对稳定;负荷基... 小地区短期负荷预测是电网企业精细化管理的重要手段。针对小地区短期负荷预测的特点,提出了基于解耦机制的误差分析模型和预测机制,将短期负荷预测分为负荷水平预测和标幺曲线预测两部分。小地区负荷结构单一,标幺曲线相对稳定;负荷基数较小,负荷水平的波动比较明显;标幺曲线和负荷水平受不同因素的影响,影响机理不同,分别预测有利于提高预测精度。提出了标幺曲线和平均负荷预测方法,理论分析和实践均证明,该方法能较好地把握负荷发展规律,提高了标幺曲线和平均负荷的预测精度,使总预测效果得到了改善。 展开更多
关键词 负荷预测 平均负荷 标幺曲线 解耦机制 电力系统
在线阅读 下载PDF
多级负荷聚类和解耦机制的配电网短期负荷预测方法 被引量:11
2
作者 高立克 梁朔 +1 位作者 陈绍南 李珊 《电力系统及其自动化学报》 CSCD 北大核心 2021年第10期89-96,111,共9页
为解决配电网供电分区负荷特性因用电结构与用户用电习惯差异呈现多样性,导致泛化的预测模型难以提供满意计算精度,以及新投运配变由于缺乏历史数据积累,无法为机器学习提供大量训练样本的问题,提出了一种多级负荷聚类和解耦机制的短期... 为解决配电网供电分区负荷特性因用电结构与用户用电习惯差异呈现多样性,导致泛化的预测模型难以提供满意计算精度,以及新投运配变由于缺乏历史数据积累,无法为机器学习提供大量训练样本的问题,提出了一种多级负荷聚类和解耦机制的短期负荷预测方法。首先,进行基于变电站用电量以及台区用户用电特性差异的多级负荷特性聚类。随后,对不同聚类配变构建基于脉冲神经网络的短期负荷预测模型,并采用负荷标幺曲线和基准值分开预测的解耦机制应对新投运配变的小样本问题。最后,综合分类预测结果得到日负荷预测曲线。实例证明该方法能实现负荷预测的精细化,并减小新投运配变的预测误差影响,改善了综合预测结果。 展开更多
关键词 负荷聚类 负荷预测 解耦机制 脉冲神经网络
在线阅读 下载PDF
基于解耦机制的短期母线负荷预测方法
3
作者 孙谦 李嘉龙 +3 位作者 王一 刘思捷 林英明 姚建刚 《广东电力》 2013年第12期18-25,共8页
准确的短期母线负荷预测是实现节能降耗与调度精细化管理的基础,提出了一种基于解耦机制的预测方法。首先研究划分样本集最优簇结构的AFS(AP,FCM,Silhouette)聚类算法。利用AP聚类(affinity propagation clustering)计算样本集聚类数的... 准确的短期母线负荷预测是实现节能降耗与调度精细化管理的基础,提出了一种基于解耦机制的预测方法。首先研究划分样本集最优簇结构的AFS(AP,FCM,Silhouette)聚类算法。利用AP聚类(affinity propagation clustering)计算样本集聚类数的搜索区间;从大到小排列各样本点的密度指标,得到初始化矩阵;通过Silhouette指标进行有效性检验,获取最优聚类结果。将预测过程分为负荷水平预测和标幺曲线预测两部分,并制定适应其各自特点的预测策略。采用改进的灰色关联分析计算各日特征相关因素关联负荷水平的权值,并将该权值赋予相似选择的目标函数,由最小二乘支持向量机训练相似集进而做出预测;划分标幺曲线样本集的最优簇结构,利用逐步判别分析建立的Bayes判别函数将目标日归类,并根据相似度加权平均该类历史标幺曲线。实例分析验证了该预测机制及模型的优越性。 展开更多
关键词 短期母线负荷预测 解耦机制 AFS聚类算法 预测策略 相似日
在线阅读 下载PDF
多通道解耦事件触发机制及其在光电传感网络中的应用 被引量:5
4
作者 陈烨 李银伢 +1 位作者 戚国庆 盛安冬 《自动化学报》 EI CSCD 北大核心 2017年第2期227-237,共11页
针对传感器网络融合估计中由能量受限引发的通信资源受限问题,提出了一种基于多通道解耦的事件触发量测传输机制.单独设计各传感器输出分量的事件触发条件并给出了估计算法误差有界性的条件,在保证融合估计精度的同时,可一定程度上降低... 针对传感器网络融合估计中由能量受限引发的通信资源受限问题,提出了一种基于多通道解耦的事件触发量测传输机制.单独设计各传感器输出分量的事件触发条件并给出了估计算法误差有界性的条件,在保证融合估计精度的同时,可一定程度上降低传感器网络数据传输量.与现有三种方法的对比仿真结果以及火力控制系统中的光电传感网络实例,表明了所提算法的有效性和工程应用的可行性. 展开更多
关键词 集中式融合估计算法 多通道解耦事件触发机制 通信量频率 光电传感网络
在线阅读 下载PDF
基于知识辅助的结构化医疗报告生成 被引量:1
5
作者 史继筠 张驰 +2 位作者 王禹桥 罗兆经 张美慧 《计算机科学》 CSCD 北大核心 2024年第6期317-324,共8页
医疗报告自动生成是文本摘要生成技术的重要应用。由于医疗问诊数据与通用领域的数据特征存在着明显的差异,传统的文本摘要生成方法不能充分理解并利用医疗文本中高复杂性的医疗术语,因此医疗问诊中包含的关键知识并没有得到充分的利用... 医疗报告自动生成是文本摘要生成技术的重要应用。由于医疗问诊数据与通用领域的数据特征存在着明显的差异,传统的文本摘要生成方法不能充分理解并利用医疗文本中高复杂性的医疗术语,因此医疗问诊中包含的关键知识并没有得到充分的利用。此外,传统的文本摘要生成方法大多是直接生成摘要,并没有针对医疗报告结构化的特点自动选择过滤关键信息并生成结构化文本的能力。针对上述问题,提出了一种知识辅助的结构化医疗报告生成方法。该方法将实体引导的先验领域知识与结构引导的任务解耦机制相结合,实现了对医疗问诊数据的关键知识与医疗报告的结构化特点的充分利用。在IMCS21数据集上的实验验证了所提方法的有效性,其生成摘要的ROUGE分数与同类方法相比提升了2%~3%,生成了更准确的医疗报告。 展开更多
关键词 医疗报告生成 预训练模型 生成式摘要 领域知识先验 任务解耦机制
在线阅读 下载PDF
基于AHRFaultSegNet深度学习网络的地震数据断层自动识别 被引量:1
6
作者 李克文 李文韬 +2 位作者 窦一民 朱信源 阳致煊 《石油地球物理勘探》 EI CSCD 北大核心 2024年第6期1225-1234,共10页
断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基... 断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基础上,构建了一种基于解耦自注意力机制的高分辨率断层识别网络模型AHRFaultSegNet。对于自注意力机制解耦,结合空间注意力和通道注意力,代替HRNet中并行传播的卷积层,在减少传统自注意力机制计算量的同时,模型可以在全局范围内计算输入特征的相关性,更准确地建模非局部特征;对解耦自注意力使用残差连接来保留原始特征,在加速模型训练的同时,使模型能够更好地保持细节信息。实验结果表明,所提出的网络模型在Dice、Fmeasure、IoU、Precision、Recall等性能评价指标上均优于其他常见的断层自动识别网络模型。通过对合成地震数据与实际地震数据等进行测试,证明了该方法对断层细微结构具有良好的识别效果并且具有良好的抗噪能力。 展开更多
关键词 断层检测识别 深度学习 解耦自注意力机制 残差连接
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部