In this paper,we characterize the multipliers of generalized Bergman spaces A^p,q,α with 0<p≤1, 0<q, α<∞into some analytic function spaces and into sequence spaces,and show that the multipliers of A^p,q,...In this paper,we characterize the multipliers of generalized Bergman spaces A^p,q,α with 0<p≤1, 0<q, α<∞into some analytic function spaces and into sequence spaces,and show that the multipliers of A^p,q,α(0<p≤1,0<q, α<∞) into a given space are the same as those of A^p,α(0<p≤1, α>0) in almost every case considered. The corollaries on multipliers of the spaces A^p,q,α extend some related results.展开更多
Composition operators are used to study the E(p,q) spaces. The boundedness of these operators is also considered. The criteria for these operators to be bounded are given in terms of the Carleson measure.
A Bernstein type theorem and a converse theorem of best approximation by polynomials in Bergman spaces Hq^p(p>0,q>1) are proved.Some proofs and results in [1] are in proved.
文摘In this paper,we characterize the multipliers of generalized Bergman spaces A^p,q,α with 0<p≤1, 0<q, α<∞into some analytic function spaces and into sequence spaces,and show that the multipliers of A^p,q,α(0<p≤1,0<q, α<∞) into a given space are the same as those of A^p,α(0<p≤1, α>0) in almost every case considered. The corollaries on multipliers of the spaces A^p,q,α extend some related results.
文摘Composition operators are used to study the E(p,q) spaces. The boundedness of these operators is also considered. The criteria for these operators to be bounded are given in terms of the Carleson measure.
基金This paper is a part of the author's series of letures at the Mathematical Institute of the Hungarian Academy of Sciences while visiting Hungary sent by the state Education Committee,the People's Republic of China.
文摘A Bernstein type theorem and a converse theorem of best approximation by polynomials in Bergman spaces Hq^p(p>0,q>1) are proved.Some proofs and results in [1] are in proved.