期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
第一类弱奇异Volterra积分方程解的渐近展开式
1
作者
刘思靖
王同科
《应用数学》
CSCD
北大核心
2022年第1期87-98,共12页
针对核函数和自由项代数且对数奇异的第一类线性Volterra积分方程,通过Laplace变换导出这类方程的解在零点的渐近展开式,对于方程解的奇异性质给出准确刻画.对于核函数仅代数奇异的情形,还得到方程的解在无穷远点的渐近展开式.这些展开...
针对核函数和自由项代数且对数奇异的第一类线性Volterra积分方程,通过Laplace变换导出这类方程的解在零点的渐近展开式,对于方程解的奇异性质给出准确刻画.对于核函数仅代数奇异的情形,还得到方程的解在无穷远点的渐近展开式.这些展开式可以分别作为当自变量变小或变大时方程的近似解.最后,给出实例说明展开式的正确性及有效性.
展开更多
关键词
第一类弱奇异Volterra积分方程
LAPLACE变换
解在
零
点的
渐近
展开式
解在
无穷远
点的
渐近
展开式
在线阅读
下载PDF
职称材料
带化学反应的边界层流动问题中一类弱奇异Volterra积分方程的近似解
被引量:
1
2
作者
季鹭
王同科
高广花
《工程数学学报》
CSCD
北大核心
2023年第1期147-158,共12页
研究带化学表面反应的边界层流动问题导出的一类弱奇异Volterra积分方程的近似解。以一些化学反应的阶数为例求出解在零点的分数阶级数展开式及其Pade有理逼近。通过将发散积分解释为Hadamard有限部分积分,并借助数值积分方法导出解在...
研究带化学表面反应的边界层流动问题导出的一类弱奇异Volterra积分方程的近似解。以一些化学反应的阶数为例求出解在零点的分数阶级数展开式及其Pade有理逼近。通过将发散积分解释为Hadamard有限部分积分,并借助数值积分方法导出解在无穷远点的带高阶对数项的渐近展开式。实际计算表明,给出的解在零点和无穷远点展开式的联合使用可以在整个半无限区间上高效地求解这类带化学表面反应的边界层流动问题。
展开更多
关键词
边界层流动
化学表面反应
弱奇异Volterra积分方程
Hadamard有限部分积分
解在
零
点
的展开式
解在无穷远点的展开式
在线阅读
下载PDF
职称材料
题名
第一类弱奇异Volterra积分方程解的渐近展开式
1
作者
刘思靖
王同科
机构
天津师范大学数学科学学院
出处
《应用数学》
CSCD
北大核心
2022年第1期87-98,共12页
基金
国家自然科学基金(11971241)
天津市高等学校创新团队培养计划项目(TD13-5078)。
文摘
针对核函数和自由项代数且对数奇异的第一类线性Volterra积分方程,通过Laplace变换导出这类方程的解在零点的渐近展开式,对于方程解的奇异性质给出准确刻画.对于核函数仅代数奇异的情形,还得到方程的解在无穷远点的渐近展开式.这些展开式可以分别作为当自变量变小或变大时方程的近似解.最后,给出实例说明展开式的正确性及有效性.
关键词
第一类弱奇异Volterra积分方程
LAPLACE变换
解在
零
点的
渐近
展开式
解在
无穷远
点的
渐近
展开式
Keywords
Weakly singular Volterra integral equation of the first kind
Laplace transform
Asymptotic expansion about zero
Asymptotic expansion at infinity
分类号
O175.5 [理学—基础数学]
O241.83 [理学—计算数学]
在线阅读
下载PDF
职称材料
题名
带化学反应的边界层流动问题中一类弱奇异Volterra积分方程的近似解
被引量:
1
2
作者
季鹭
王同科
高广花
机构
天津师范大学数学科学学院
南京邮电大学理学院
出处
《工程数学学报》
CSCD
北大核心
2023年第1期147-158,共12页
基金
国家自然科学基金(11971241)
江苏省自然科学基金(BK20191375)
天津市高等学校创新团队培养计划(TD13-5078)。
文摘
研究带化学表面反应的边界层流动问题导出的一类弱奇异Volterra积分方程的近似解。以一些化学反应的阶数为例求出解在零点的分数阶级数展开式及其Pade有理逼近。通过将发散积分解释为Hadamard有限部分积分,并借助数值积分方法导出解在无穷远点的带高阶对数项的渐近展开式。实际计算表明,给出的解在零点和无穷远点展开式的联合使用可以在整个半无限区间上高效地求解这类带化学表面反应的边界层流动问题。
关键词
边界层流动
化学表面反应
弱奇异Volterra积分方程
Hadamard有限部分积分
解在
零
点
的展开式
解在无穷远点的展开式
Keywords
boundary layer flow
chemical surface reaction
weakly singular Volterra integral equation
Hadamard finite part integral
expansion of solution about zero
expansion of solution at infinity
分类号
O241.83 [理学—计算数学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
第一类弱奇异Volterra积分方程解的渐近展开式
刘思靖
王同科
《应用数学》
CSCD
北大核心
2022
0
在线阅读
下载PDF
职称材料
2
带化学反应的边界层流动问题中一类弱奇异Volterra积分方程的近似解
季鹭
王同科
高广花
《工程数学学报》
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部