近年来,句法驱动的语义角色标注(Semantic Role Labeling,SRL)受到了广泛的关注。但是,大部分工作只考虑如何利用单个同构句法树信息。考虑到汉语中存在多个人工构建的高质量异构句法树库,提出采用图卷积神经网络(Graph Convolutional N...近年来,句法驱动的语义角色标注(Semantic Role Labeling,SRL)受到了广泛的关注。但是,大部分工作只考虑如何利用单个同构句法树信息。考虑到汉语中存在多个人工构建的高质量异构句法树库,提出采用图卷积神经网络(Graph Convolutional Networks,GCN)来刻画多个异构句法树中包含的句法信息,并深入比较多种编码方式,来提升汉语SRL的性能。最终,该模型在CPB 1.0和CoNLL-2009汉语数据集上分别达到了84.16%和85.30%的F1值,均高于编码同构句法树的实验结果,且相比于前人的方法有了显著的提升。展开更多
研究了中文名词性谓词的语义角色标注(semantic role labeling,简称SRL).在使用传统动词性谓词SRL相关特征的基础上,进一步提出了名词性谓词SRL相关的特征集.此外,探索了中文动词性谓词SRL对中文名词性谓词SRL的影响,并且联合谓词自动...研究了中文名词性谓词的语义角色标注(semantic role labeling,简称SRL).在使用传统动词性谓词SRL相关特征的基础上,进一步提出了名词性谓词SRL相关的特征集.此外,探索了中文动词性谓词SRL对中文名词性谓词SRL的影响,并且联合谓词自动识别实现了全自动的中文名词性谓词SRL.在中文NomBank上的实验结果表明,中文动词性谓词的SRL合理使用能够大幅度提高中文名词性谓词的SRL性能;基于正确句法树和正确谓词识别,中文名词性谓词的SRL性能F1值达到了72.67,大大优于目前国内外的同类系统;基于自动句法树和自动谓词识别,性能F1值为55.14.展开更多
提出一种基于特征组合和支持向量机(support vector machine,简称SVM)的语义角色标注(semantic role labeling,简称SRL)方法.该方法以句法成分作为基本标注单元,首先从当前基于句法分析的语义角色标注系统中选出高效特征,构成基本特征集...提出一种基于特征组合和支持向量机(support vector machine,简称SVM)的语义角色标注(semantic role labeling,简称SRL)方法.该方法以句法成分作为基本标注单元,首先从当前基于句法分析的语义角色标注系统中选出高效特征,构成基本特征集合.然后提出一种基于统计的特征组合方法.该方法能够根据正反例中组合特征的分布状况,以类间距离和类内距离之比作为统计量来衡量组合特征对分类所产生的效果,保留分类效果较好的组合特征.最后,在Chinese PropBank(CPB)语料上利用支持向量机进行分类实验,结果表明,引入该特征组合方法后,语义角色标注整体F值达91.81%,提高了近2%.展开更多
文摘研究了中文名词性谓词的语义角色标注(semantic role labeling,简称SRL).在使用传统动词性谓词SRL相关特征的基础上,进一步提出了名词性谓词SRL相关的特征集.此外,探索了中文动词性谓词SRL对中文名词性谓词SRL的影响,并且联合谓词自动识别实现了全自动的中文名词性谓词SRL.在中文NomBank上的实验结果表明,中文动词性谓词的SRL合理使用能够大幅度提高中文名词性谓词的SRL性能;基于正确句法树和正确谓词识别,中文名词性谓词的SRL性能F1值达到了72.67,大大优于目前国内外的同类系统;基于自动句法树和自动谓词识别,性能F1值为55.14.