期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于隐式对齐的视频超分辨率模型
1
作者 王凤玲 魏爱敏 +2 位作者 庞雄文 李智 谢景明 《计算机科学》 北大核心 2025年第8期232-239,共8页
视频帧之间不仅具有空间相关性,还存在时间相关性。根据低分辨率视频重建高分辨率视频时,可以利用相邻的多帧信息对齐到目标帧,以指导当前帧的恢复。相邻帧之间的对齐一般采用光流指导的可变形卷积进行显式对齐,这种方法克服了可变形卷... 视频帧之间不仅具有空间相关性,还存在时间相关性。根据低分辨率视频重建高分辨率视频时,可以利用相邻的多帧信息对齐到目标帧,以指导当前帧的恢复。相邻帧之间的对齐一般采用光流指导的可变形卷积进行显式对齐,这种方法克服了可变形卷积的不稳定性,但会影响帧中高频信息的恢复,降低对齐信息的准确性并放大伪影。为解决上述问题,提出了一种基于隐式对齐的视频超分模型IAVSR(Implicit Alignment Video Super-Resolution)。IAVSR通过偏移量和原始值将光流编码到特定像素位置,以此计算光流预对齐的信息而不是利用插值函数插值获得,随后利用光流指导的可变形卷积对计算后的预对齐特征进行重对齐,以帮助高频信息的恢复。在双向传播中利用前两帧传播的信息进行对齐来指导当前帧的恢复,并引入残差网络结构,在提高对齐信息准确性的同时避免引入过多的参数。在REDS4公开数据集上的实验结果表明,IAVSR的峰值信噪比(PSNR)比基准模型提高了0.6 dB,且模型训练时的收敛速度提升了20%。 展开更多
关键词 视频超分辨率 可变形卷积 重采样 隐式对齐 光流
在线阅读 下载PDF
基于深度学习的视频超分辨率重建算法进展
2
作者 唐麒 赵耀 +1 位作者 刘美琴 姚超 《自动化学报》 北大核心 2025年第7期1480-1524,共45页
视频超分辨率重建是底层计算机视觉任务中的一个重要研究方向,旨在利用低分辨率视频的帧内和帧间信息,重建具有更多细节和内容一致的高分辨率视频,有助于提升下游任务性能和改善用户观感体验.近年来,基于深度学习的视频超分辨率重建算... 视频超分辨率重建是底层计算机视觉任务中的一个重要研究方向,旨在利用低分辨率视频的帧内和帧间信息,重建具有更多细节和内容一致的高分辨率视频,有助于提升下游任务性能和改善用户观感体验.近年来,基于深度学习的视频超分辨率重建算法大量涌现,在帧间对齐、信息传播等方面取得突破性的进展.首先,在简述视频超分辨率重建任务的基础上,梳理现有的视频超分辨率重建的公共数据集及相关算法;接着,详细综述基于深度学习的视频超分辨率重建算法的创新性工作进展情况;最后,总结视频超分辨率重建算法面临的挑战及未来的发展趋势. 展开更多
关键词 视频超分辨率重建 深度学习 循环神经网络 注意力机制 光流估计 可变形卷积
在线阅读 下载PDF
基于混合时空卷积的轻量级视频超分辨率重建 被引量:2
3
作者 夏振平 陈豪 +2 位作者 张宇宁 程成 胡伏原 《光学精密工程》 EI CAS CSCD 北大核心 2024年第16期2564-2576,共13页
针对三维卷积神经网络在视频超分辨率任务上具有较高的计算复杂度以及提取时空特征有限的问题,本文设计了一种基于混合时空卷积的轻量级视频超分辨率重建网络。首先,提出了一个基于混合时空卷积的模块,实现了网络时空特征提取能力的提... 针对三维卷积神经网络在视频超分辨率任务上具有较高的计算复杂度以及提取时空特征有限的问题,本文设计了一种基于混合时空卷积的轻量级视频超分辨率重建网络。首先,提出了一个基于混合时空卷积的模块,实现了网络时空特征提取能力的提升以及计算复杂度的降低;其次,提出了一个基于相似性的选择性特征融合模块,进一步增强了相关特征的提取能力;最后,设计了一种基于注意力机制的运动补偿模块,在一定程度上减轻了错误的特征融合的影响。实验结果表明:所提网络可以在视频超分辨率性能和网络复杂度之间取得很好的平衡,而且在基准数据集SPMCS-11上4倍超分辨率达到8 frame/s。所提网络满足了边缘设备推理运行中快速、准确等要求。 展开更多
关键词 视频超分辨率 深度学习 三维卷积神经网络 特征融合
在线阅读 下载PDF
基于帧间跨越光流的视频超分辨率重建网络
4
作者 刘扬 刘蓉 +2 位作者 方可 张心月 王光旭 《计算机应用》 CSCD 北大核心 2024年第4期1277-1284,共8页
面对运动幅度较大的复杂场景,当前的视频超分辨率(VSR)算法在处理长序列时无法充分利用不同距离的帧间信息,难以精确地恢复遮挡、边界和多细节区域。为解决上述问题,提出一种基于帧间跨越光流机制的VSR模型。首先,通过密集残差块(RDB)... 面对运动幅度较大的复杂场景,当前的视频超分辨率(VSR)算法在处理长序列时无法充分利用不同距离的帧间信息,难以精确地恢复遮挡、边界和多细节区域。为解决上述问题,提出一种基于帧间跨越光流机制的VSR模型。首先,通过密集残差块(RDB)提取低分辨率视频帧(LR)的浅层特征;其次,通过光流空间金字塔网络(SPyNet)以不同时间长度的跨越光流对视频帧进行运动估计和运动补偿,并通过RDB对帧间信息进行深层特征提取与矫正;最后,融合浅层特征与深层特征,并通过上采样得到高分辨率视频帧(HR)。在REDS4公开数据集上的实验结果表明,所提模型与经典的非显式运动补偿的动态上采样滤波器视频超分辨率网络(DUF-VSR)相比,峰值信噪比(PSNR)和结构相似性(SSIM)分别提升了1.07 dB和0.06。验证了所提模型可有效提高视频图像重建的质量。 展开更多
关键词 视频超分辨率算法 光流 运动补偿 密集残差块 深层特征
在线阅读 下载PDF
基于层次特征复用的视频超分辨率重建 被引量:1
5
作者 周圆 王明非 +1 位作者 杜晓婷 陈艳芳 《自动化学报》 EI CAS CSCD 北大核心 2024年第9期1736-1746,共11页
当前的深度卷积神经网络方法,在视频超分辨率任务上实现的性能提升相对于图像超分辨率任务略低,部分原因是它们对层次结构特征中的某些关键帧间信息的利用不够充分.为此,提出一个称作层次特征复用网络(Hierarchical feature reuse netwo... 当前的深度卷积神经网络方法,在视频超分辨率任务上实现的性能提升相对于图像超分辨率任务略低,部分原因是它们对层次结构特征中的某些关键帧间信息的利用不够充分.为此,提出一个称作层次特征复用网络(Hierarchical feature reuse network,HFRNet)的结构,用以解决上述问题.该网络保留运动补偿帧的低频内容,并采用密集层次特征块(Dense hierarchical feature block,DHFB)自适应地融合其内部每个残差块的特征,之后用长距离特征复用融合多个DHFB间的特征,从而促进高频细节信息的恢复.实验结果表明,提出的方法在定量和定性指标上均优于当前的方法. 展开更多
关键词 层次特征复用 卷积神经网络 特征融合 视频超分辨率重建
在线阅读 下载PDF
多视频超分辨率的时间重建倍数 被引量:1
6
作者 陈为龙 郭黎 +2 位作者 雷刚 吴炜 杨晓敏 《光学精密工程》 EI CAS CSCD 北大核心 2014年第9期2518-2527,共10页
多视频超分辨率时间重建技术可以消除视频中的运动模糊和运动混叠现象。进行多视频时间重建时,重建倍数过小不能有效地减小运动模糊和运动混叠现象;而重建倍数过大会产生严重的时间振铃现象和运动物体位置的跳变。本文对如何在重建过程... 多视频超分辨率时间重建技术可以消除视频中的运动模糊和运动混叠现象。进行多视频时间重建时,重建倍数过小不能有效地减小运动模糊和运动混叠现象;而重建倍数过大会产生严重的时间振铃现象和运动物体位置的跳变。本文对如何在重建过程中确定最优的时间重建倍数进行了研究。通常情况下,在决定多视频时间重建倍数时只考虑输入视频的个数;但在实际重建过程中,除了输入视频个数的因素,时间重建倍数还与各个输入视频在时间上能提供的冗余信息量有关。文中从多个低分辨率输入视频配准后的位置关系入手,通过对曝光区间的分析,提出了确定多视频时间重建倍数的计算方法。最后对提出的方法进行了理论分析与实验,证明了所提方法的有效性。 展开更多
关键词 视频超分辨率 时间重建倍数 时间配准 时间分辨率 冗余信息
在线阅读 下载PDF
多阶段帧对齐的视频超分辨率重建网络 被引量:1
7
作者 王森 祝阳 +2 位作者 张印辉 王庆健 何自芬 《光学精密工程》 EI CAS CSCD 北大核心 2023年第16期2430-2443,共14页
视频超分辨率(Video-Super Resolution,VSR)旨在将低分辨率视频帧序列重建为高分辨率视频帧序列。相较于图像超分辨率,VSR由于增加了时间维度的信息,因此通常需要依赖邻近帧高度相关信息实现当前帧的重建。如何对齐相邻帧,并获取帧间高... 视频超分辨率(Video-Super Resolution,VSR)旨在将低分辨率视频帧序列重建为高分辨率视频帧序列。相较于图像超分辨率,VSR由于增加了时间维度的信息,因此通常需要依赖邻近帧高度相关信息实现当前帧的重建。如何对齐相邻帧,并获取帧间高度相关信息,是VSR任务关注的重点问题。本文将VSR任务分为去模糊、对齐、重建三个阶段。在去模糊阶段,将当前帧与相邻帧进行预对齐,获取与当前帧高度相关的特征信息,通过强化当前帧的细节以便实现初始阶段更多特征信息的提取。在对齐阶段,通过对输入特征进行二次对齐操作,利用相邻帧中高度相关信息进一步强化当前帧中特征信息。在重建阶段,通过聚合原始低分辨率帧以在网络末端提供更多特征信息。本文利用多层感知机(Multi-Layer Perceptron,MLP)代替传统卷积操作构造特征提取模块,同时对生成的特征信息进行二次对齐,以细化图像特征获得更优的视频帧重建效果。实验结果表明,本文提出的算法在多种公开数据集上的视频帧序列重建精度更高的同时,也取得了更少的网络参数量和更连贯的视频序列重建表现。 展开更多
关键词 计算机视觉 视频超分辨率 多层感知机 注意力机制 光流 帧对齐
在线阅读 下载PDF
基于非局部均值和总变分最小化的单视频超分辨率算法 被引量:1
8
作者 陈诚 常侃 +2 位作者 莫彩网 李天亦 覃团发 《计算机科学》 CSCD 北大核心 2018年第3期263-267,共5页
传统的基于重建的单视频超分辨率方法能够获得较好的重建效果。然而,已有算法没有充分利用视频内的帧间、帧内相关性,重建效果仍有待提升。针对这一问题,提出了一种新的单视频超分辨率算法。为充分利用帧内相关性,采用非局部均值模型表... 传统的基于重建的单视频超分辨率方法能够获得较好的重建效果。然而,已有算法没有充分利用视频内的帧间、帧内相关性,重建效果仍有待提升。针对这一问题,提出了一种新的单视频超分辨率算法。为充分利用帧内相关性,采用非局部均值模型表征帧内非局部结构特性,采用总变分模型表征帧内局部结构特性;为了探索帧间相关性,采用光流法进行帧间预测。最后,为了求解所建立的优化问题,提出了基于split-Bregman方法的快速迭代算法。实验结果表明,与同类算法相比,所提算法在主、客观质量上均有相应的提升。 展开更多
关键词 视频超分辨率 非局部均值 总变分 光流法
在线阅读 下载PDF
光流估计补偿结合生成对抗网络提高视频超分辨率感知质量 被引量:1
9
作者 祝轩 柳欣 +3 位作者 兰志翔 孙逸霏 金玉莹 陈培榕 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期173-182,共10页
视频超分辨率(VSR)的任务是利用序列视频帧具有的时间连续性和空间相似性提高视频的分辨率。主流的VSR方法利用像素损失优化网络,导致生成的超分辨率(SR)重建结果边缘模糊、细节平滑。为此,提出了一个新的引入时空特征补偿和多特征鉴别... 视频超分辨率(VSR)的任务是利用序列视频帧具有的时间连续性和空间相似性提高视频的分辨率。主流的VSR方法利用像素损失优化网络,导致生成的超分辨率(SR)重建结果边缘模糊、细节平滑。为此,提出了一个新的引入时空特征补偿和多特征鉴别器的端到端的VSR网络框架MC-PETGAN。该框架包括光流估计补偿网络和多特征鉴别生成对抗网络。光流估计补偿网络利用相邻视频帧之间的短时连续和内容相似性特征为多特征鉴别生成对抗网络提供有效丰富的细节信息;生成器与包括像素、边缘和纹理鉴别器的多特征鉴别器的对抗训练促使SR帧与高分辨率(HR)帧的像素、边缘和纹理趋于一致。大量公共数据集和监控视频数据的实验结果表明,该文方法能够有效提高视频SR结果的像素精度,并恢复出清晰的边缘和纹理,而且视觉感受愉快,感知指标有竞争力。 展开更多
关键词 视频超分辨率 光流估计补偿 多特征鉴别器 感知质量
在线阅读 下载PDF
基于低秩及全变分的视频超分辨率重建 被引量:6
10
作者 黄璇 杨晓梅 《计算机应用研究》 CSCD 北大核心 2015年第3期938-941,共4页
视频序列沿着时间轴展开所形成的二维矩阵具有低秩性,由此提出了一种利用该性质并结合全变分约束的视频超分辨率重建算法。该方法使用保真项以及上述两约束条件构造视频超分辨率重建的优化函数,然后采用变量分裂法求解该优化问题。实验... 视频序列沿着时间轴展开所形成的二维矩阵具有低秩性,由此提出了一种利用该性质并结合全变分约束的视频超分辨率重建算法。该方法使用保真项以及上述两约束条件构造视频超分辨率重建的优化函数,然后采用变量分裂法求解该优化问题。实验结果表明,相比于两步迭代(two-step iterative shrinkage/thresholding,Tw IST)、3D核回归(3D kernel regression,3DKR)等方法,此算法能得到更好的峰值信噪比和结构相似度,即使在模糊和噪声的影响下,该算法也具有良好的性能,能较好地重建出视频图像。 展开更多
关键词 视频超分辨率重建 低秩矩阵恢复 全变分 变量分裂法 结构相似度
在线阅读 下载PDF
多阶导数自适应视频超分辨率重建 被引量:1
11
作者 吉晓红 熊淑华 +1 位作者 何小海 陈洪刚 《计算机应用》 CSCD 北大核心 2016年第4期1092-1095,1150,共5页
传统视频超分辨率重建算法在去除噪声的同时,很难有效保持图像边缘细节信息。针对该问题,构建了一种结合多阶导数数据项和自适应正则化项的视频超分辨率重建算法。在正则化重建模型的基础上,该算法对数据项进行改进,引入能更好描述噪声... 传统视频超分辨率重建算法在去除噪声的同时,很难有效保持图像边缘细节信息。针对该问题,构建了一种结合多阶导数数据项和自适应正则化项的视频超分辨率重建算法。在正则化重建模型的基础上,该算法对数据项进行改进,引入能更好描述噪声统计特性的噪声多阶导数,并利用去噪效果较好的全变分(TV)和非局部均值(NLM)正则化项对视频超分辨率重建过程进行约束。此外,为了更好地保持图像细节信息,采用区域空间自适应曲率差分算法提取结构信息,从而对正则化系数进行自适应加权。实验结果表明:在噪声方差为3时,与核回归算法和聚类算法相比,该算法重建视频主观效果边缘更加锐化,局部结构更加正确、清晰;重建视频的均方误差(MSE)平均下降幅度分别为25.75%和22.50%;峰值信噪比(PSNR)分别平均提升了1.35 d B和1.14 d B。所提算法能够在去除噪声的同时有效保持图像的细节特征。 展开更多
关键词 视频超分辨率 正则化 区域空间自适应 多阶导数 图像重建
在线阅读 下载PDF
一种多尺度三维卷积的视频超分辨率方法 被引量:2
12
作者 詹克羽 孙岳 李颖 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2021年第5期8-14,共7页
视频超分辨率技术可由低分辨率视频获得高分辨率视频,有效提升视频的显示效果。与单幅图像超分辨率不同,如何利用相邻视频帧之间的信息在视频超分辨率中则显得十分重要。为改善视频超分辨率重建的性能,充分利用视频帧的时间-空间相关性... 视频超分辨率技术可由低分辨率视频获得高分辨率视频,有效提升视频的显示效果。与单幅图像超分辨率不同,如何利用相邻视频帧之间的信息在视频超分辨率中则显得十分重要。为改善视频超分辨率重建的性能,充分利用视频帧的时间-空间相关性,提出一种基于多尺度三维卷积的视频超分辨率模型。该模型输入连续的多帧视频图像,输出中间帧的超分辨率重建结果,包括多尺度特征提取、特征融合以及高分辨率重建3个模块。首先,使用多尺度的三维卷积进行初步特征提取;然后,使用三维卷积残差结构进行特征融合,并将特征图进行通道分离,在融合不同尺度的特征时,有效地减少了网络的参数量;最后,使用多个残差密集连接块和亚像素卷积进行高分辨率重建,并结合全局残差连接得到重建的高分辨率视频图像。Vid4数据集上3倍和4倍超分辨率放大的实验结果表明,与其他已有方法相比,该方法可有效提升峰值信噪比和结构相似性性能,取得较好的视觉效果。 展开更多
关键词 视频超分辨率 三维卷积 残差网络 时间-空间相关性
在线阅读 下载PDF
基于光流残差的视频超分辨率重建算法 被引量:3
13
作者 吴昊 赖惠成 +1 位作者 钱绪泽 陈豪 《计算机工程与应用》 CSCD 北大核心 2022年第15期220-228,共9页
随着卷积神经网络的发展,视频超分辨率算法取得了显著的成功。因为帧与帧之间的依赖关系比较复杂,所以传统方法缺乏对复杂的依赖关系进行建模的能力,难以对视频超分辨率重建的过程进行精确地运动估计和补偿。因此提出一个基于光流残差... 随着卷积神经网络的发展,视频超分辨率算法取得了显著的成功。因为帧与帧之间的依赖关系比较复杂,所以传统方法缺乏对复杂的依赖关系进行建模的能力,难以对视频超分辨率重建的过程进行精确地运动估计和补偿。因此提出一个基于光流残差的重建网络,在低分辨率空间使用密集残差网络得到相邻视频帧的互补信息,通过金字塔的结构来预测高分辨率视频帧的光流,通过亚像素卷积层将低分辨率的视频帧变成高分辨率视频帧,并将高分辨率的视频帧与预测的高分辨率光流进行运动补偿,将其输入到超分辨率融合网络来得到更好的效果,提出新的损失函数训练网络,能够更好地对网络进行约束。在公开数据集上的实验结果表明,重建效果在峰值信噪比、结构相似度、主观视觉的效果上均有提升。 展开更多
关键词 视频超分辨率 光流估计 密集残差块
在线阅读 下载PDF
基于空间金字塔的视频超分辨率重建算法 被引量:2
14
作者 蔡非凡 万旺根 《电子测量技术》 北大核心 2022年第5期100-104,共5页
为了保证重建视觉质量的同时提高重建速率,提出了一种基于空间金字塔生成对抗网络的视频超分辨率重建算法(SPyGAN),该方法在TecoGAN的基础上使用更轻量级的空间金字塔网络结构SPyNet和更高效的上采样方法,能够快速重建图像的高频纹理细... 为了保证重建视觉质量的同时提高重建速率,提出了一种基于空间金字塔生成对抗网络的视频超分辨率重建算法(SPyGAN),该方法在TecoGAN的基础上使用更轻量级的空间金字塔网络结构SPyNet和更高效的上采样方法,能够快速重建图像的高频纹理细节。主要对生成对抗网络TecoGAN的光流预测网络、图像重建模块和损失函数部分进行改进,实验结果表明,该算法与TecoGAN相比,PSNR和SSIM的平均值均有一定提高,此外参数量减少为53.86%,并且重建速率提高至239%,有效提升了模型的重建速率。 展开更多
关键词 视频超分辨率 深度学习 生成对抗网络 光流预测网络 SPyGAN
在线阅读 下载PDF
基于多尺度特征残差学习卷积神经网络的视频超分辨率方法 被引量:10
15
作者 林琦 陈婧 +2 位作者 曾焕强 朱建清 蔡灿辉 《信号处理》 CSCD 北大核心 2020年第1期50-57,共8页
本文提出了一种基于多尺度特征残差学习卷积神经网络的视频超分辨率方法,考虑到视频帧之间的时空相关性,所提的方法采用由双三次插值预处理后的连续五帧视频作为卷积神经网络的输入,经由网络重建中间帧作为输出,依次按顺序重建,直至获... 本文提出了一种基于多尺度特征残差学习卷积神经网络的视频超分辨率方法,考虑到视频帧之间的时空相关性,所提的方法采用由双三次插值预处理后的连续五帧视频作为卷积神经网络的输入,经由网络重建中间帧作为输出,依次按顺序重建,直至获得整个高分辨率视频。本文所提出的卷积神经网络主要由多尺度特征提取、残差学习、亚像素卷积层、残差连接(skip-connection)四大部分组成,通过对视频的多尺度特征提取,获得更丰富的不同尺度特征,结合残差学习以更好地恢复高频信息。实验结果表明,本方法在峰值信噪比(PSNR)和结构相似性指数(SSIM)平均评价指标上较其他方法均有一定的提升(PSNR+3.151 dB,SSIM+0.102),从主观评价上看可以有效地减少视频边缘模糊的现象。 展开更多
关键词 视频超分辨率 卷积神经网络 多尺度特征 残差学习
在线阅读 下载PDF
基于深度学习的视频超分辨率重构进展综述 被引量:6
16
作者 冷佳旭 王佳 +2 位作者 莫梦竟成 陈泰岳 高新波 《计算机科学》 CSCD 北大核心 2022年第2期123-133,共11页
视频超分辨率是根据给定的低分辨率视频序列恢复其对应的高分辨率视频帧的过程。近年来,VSR在深度学习的驱动下取得了重大突破。为了进一步促进VSR的发展,文中对基于深度学习的VSR算法进行了归类、分析和比较。首先,根据网络结构将现有... 视频超分辨率是根据给定的低分辨率视频序列恢复其对应的高分辨率视频帧的过程。近年来,VSR在深度学习的驱动下取得了重大突破。为了进一步促进VSR的发展,文中对基于深度学习的VSR算法进行了归类、分析和比较。首先,根据网络结构将现有方法分为两大类,即基于迭代网络的VSR和基于递归网络的VSR,并对比分析了不同网络模型的优缺点。然后,全面介绍了VSR数据集,并在一些常用的公共数据集上对已有算法进行了总结和比较。最后,对VSR算法中的关键问题进行了分析,并对其应用前景进行了展望。 展开更多
关键词 视频超分辨率 深度学习 卷积神经网络 帧间信息
在线阅读 下载PDF
基于组反馈融合机制的视频超分辨率模型
17
作者 张庆武 迟小羽 +2 位作者 朱鉴 陈炳丰 蔡瑞初 《计算机应用研究》 CSCD 北大核心 2022年第11期3492-3497,共6页
现有的许多视频超分辨率(video super-resolution,VSR)工作都集中在如何有效地对齐相邻帧以更好地融合相邻帧信息,而很少在相邻帧信息融合这一重要步骤上进行研究。针对该问题,提出了基于组反馈融合机制的视频超分辩模型(GFFMVSR)。具... 现有的许多视频超分辨率(video super-resolution,VSR)工作都集中在如何有效地对齐相邻帧以更好地融合相邻帧信息,而很少在相邻帧信息融合这一重要步骤上进行研究。针对该问题,提出了基于组反馈融合机制的视频超分辩模型(GFFMVSR)。具体来说,在相邻帧对齐后,将对齐视频序列输入第一重时间注意力模块;然后,将序列分成几个小组,各小组依次通过组内融合模块实现初步融合,不同小组的融合结果经过第二重时间注意力模块;各小组逐组输入反馈融合模块,利用反馈机制反馈融合不同组别的信息;最后将融合结果输出重建。经验证,该模型具有较强的信息融合能力,在客观评价指标和主观视觉效果上都优于现有的模型。 展开更多
关键词 视频超分辨率 时间注意力 反馈机制 分组融合
在线阅读 下载PDF
基于多尺度时域3D卷积的视频超分辨率重建 被引量:3
18
作者 唐晓天 马骏 +2 位作者 李峰 杨雪 梁亮 《图学学报》 CSCD 北大核心 2022年第1期53-59,共7页
视频超分辨率是一项很有实用价值的工作。针对超高清产业中高分辨率资源较为匮乏的问题,为了有效利用视频序列帧间丰富的时间相关性信息及空间信息,提出一种基于多尺度时域3D卷积的视频超分辨率重建算法。该算法将输入的低分辨率视频序... 视频超分辨率是一项很有实用价值的工作。针对超高清产业中高分辨率资源较为匮乏的问题,为了有效利用视频序列帧间丰富的时间相关性信息及空间信息,提出一种基于多尺度时域3D卷积的视频超分辨率重建算法。该算法将输入的低分辨率视频序列帧分别通过不同时间尺度的3D卷积进行时空特征提取,3D卷积能够同时对空间与时间建模,相较于2D卷积更加适用于视频任务的处理,通过不同尺度时域下提取的2种时空特征自适应运动补偿后,由亚像素卷积层执行分辨率的提升并与上采样后的输入帧相加后得到最终重建的高分辨率图像。在标准数据集上的实验结果表明,该算法无论在视觉效果上,还是峰值信噪比与结构相似性等客观质量评价指标上,均有显著地提升,优于FSRCNN和EDSR等算法。 展开更多
关键词 视频超分辨率 深度学习 3D卷积 多尺度时域特征 亚像素卷积
在线阅读 下载PDF
基于深度学习特征匹配的视频超分辨率方法 被引量:2
19
作者 程松盛 潘金山 《计算机科学》 CSCD 北大核心 2021年第7期184-189,共6页
视频复原的目标是从给定的退化视频序列中把潜在的高质量视频复原出来。现有的视频复原方法主要集中在如何有效地找到相邻帧之间的运动信息,然后利用运动信息建立相邻帧之间的匹配。与这些方法不同,文中提出了基于深度学习特征匹配的方... 视频复原的目标是从给定的退化视频序列中把潜在的高质量视频复原出来。现有的视频复原方法主要集中在如何有效地找到相邻帧之间的运动信息,然后利用运动信息建立相邻帧之间的匹配。与这些方法不同,文中提出了基于深度学习特征匹配的方法来解决视频超分辨率问题。首先,通过深度卷积神经网络计算出相邻帧之间的运动信息;然后,采用一个浅层深度卷积神经网络从输入的视频帧中提取特征,基于估计到的运动信息,将浅层深度卷积神经网络提取到的特征匹配到中间视频帧对应的特征中,并将得到的特征进行有效融合;最后,采用一个深度卷积神经网络重建视频帧。大量的实验结果验证了基于深度学习特征匹配的方法能有效地解决视频超分辨率问题。与现有的基于视频帧匹配的方法相比,所提方法在现有的公开视频超分辨率数据集上取得了较好的效果。 展开更多
关键词 视频复原 视频超分辨率 深度卷积神经网络 特征匹配 运动估计
在线阅读 下载PDF
基于机载的红外动态目标视频实时超分辨率重建
20
作者 朱德燕 徐家一 敖咏琪 《光学精密工程》 北大核心 2025年第5期818-828,共11页
为了提高机载红外成像系统对动态目标的远距离探测与识别能力,提出一种基于循环残差神经网络的红外视频超分辨率重建方法。该方法针对机载红外成像系统的实际退化过程,结合动态目标的运动信息,通过优化网络架构有效提升视频重建质量。首... 为了提高机载红外成像系统对动态目标的远距离探测与识别能力,提出一种基于循环残差神经网络的红外视频超分辨率重建方法。该方法针对机载红外成像系统的实际退化过程,结合动态目标的运动信息,通过优化网络架构有效提升视频重建质量。首先,分析了包括下采样、运动模糊及噪声干扰在内的红外视频退化过程并基于此构建了低分辨率数据集,介绍了循环残差神经网络,该网络能够有效提取并传递动态目标的运动信息,从而恢复目标的形状、轮廓和细节纹理。采用跳跃级联残差结构改进模型主干,保证流畅信息流的同时使其更适合处理长视频序列,且有效避免了模型在训练过程中梯度消失。进一步,通过调整残差块的数量和各层卷积核的数量,优化了网络的表达能力和计算效率。此外,提出一种结合Charbonnier损失和高频信息损失(HFLoss)的损失函数共同监督,用于提升重建图像中高频细节的恢复效果。实验结果表明:所提出的重建方法在公开和实测红外数据集上均可实现动态目标的2倍超分辨率,PSNR值高于40 dB,SSIM值大于0.92,重建速率不低于45 frame/s。结合分辨率测试靶标与红外变焦成像系统准确标定了系统角分辨率,验证了重建方法在提升系统角分辨率方面的优势,系统角分辨率提升1.43倍。该方法能够满足机载成像系统高实时性和重建质量的要求。 展开更多
关键词 计算机视觉 视频超分辨率 深度学习 循环神经网络 深度残差网络 红外动态目标
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部