期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进自适应DBSCAN的混合式MOOC视频观看模式挖掘
被引量:
2
1
作者
王若宾
耿芳东
+3 位作者
张永梅
宋威
王伟锋
徐琳
《计算机工程与科学》
CSCD
北大核心
2023年第9期1670-1678,共9页
基于密度聚类的DBSCAN算法能够依据数据特征自动执行分类任务,多应用于含噪声的复杂数据集的聚类分析,但也存在难以确定参数以及人工参与度高的缺陷,限制了自动高准确率挖掘的应用。基于此,提出了一种基于k-dist图斜率的自适应DBSCAN算...
基于密度聚类的DBSCAN算法能够依据数据特征自动执行分类任务,多应用于含噪声的复杂数据集的聚类分析,但也存在难以确定参数以及人工参与度高的缺陷,限制了自动高准确率挖掘的应用。基于此,提出了一种基于k-dist图斜率的自适应DBSCAN算法KSSA-DBSCAN,可以依据k-dist图斜率自动选择合适的k-dist图拐点作为最佳邻域,并在聚类迭代过程中依据聚类数目的变化自动确定最佳密度阈值,克服了难以确定参数和人工参与度过高的缺陷。基于6个数据集将KSSA-DBSCAN和DBSCAN、KANN-DBSCAN进行了对比,实验结果显示,该算法的准确率在4个数据集上均优于其它算法,并且与DBSCAN相比准确率最大提高了25%。将其应用于某混合式MOOC视频观看行为数据的模式挖掘,结果显示该算法能够对视频观看模式进行有效的自动挖掘,进一步验证了该算法的有效性。
展开更多
关键词
密度聚类
自适应
k-dist图
混合式MOOC
视频观看模式
在线阅读
下载PDF
职称材料
题名
基于改进自适应DBSCAN的混合式MOOC视频观看模式挖掘
被引量:
2
1
作者
王若宾
耿芳东
张永梅
宋威
王伟锋
徐琳
机构
北方工业大学信息学院
南澳大学STEM学院
出处
《计算机工程与科学》
CSCD
北大核心
2023年第9期1670-1678,共9页
基金
国家自然科学基金(61977001)
北京市高等教育学会重点课题(ZD202127)
+1 种基金
全国高等院校计算机基础教育研究会项目(2023-AFCEC-134)
教育部高等学校大学计算机课程教学指导委员会联合高等教育出版社项目(2022)。
文摘
基于密度聚类的DBSCAN算法能够依据数据特征自动执行分类任务,多应用于含噪声的复杂数据集的聚类分析,但也存在难以确定参数以及人工参与度高的缺陷,限制了自动高准确率挖掘的应用。基于此,提出了一种基于k-dist图斜率的自适应DBSCAN算法KSSA-DBSCAN,可以依据k-dist图斜率自动选择合适的k-dist图拐点作为最佳邻域,并在聚类迭代过程中依据聚类数目的变化自动确定最佳密度阈值,克服了难以确定参数和人工参与度过高的缺陷。基于6个数据集将KSSA-DBSCAN和DBSCAN、KANN-DBSCAN进行了对比,实验结果显示,该算法的准确率在4个数据集上均优于其它算法,并且与DBSCAN相比准确率最大提高了25%。将其应用于某混合式MOOC视频观看行为数据的模式挖掘,结果显示该算法能够对视频观看模式进行有效的自动挖掘,进一步验证了该算法的有效性。
关键词
密度聚类
自适应
k-dist图
混合式MOOC
视频观看模式
Keywords
density-based clustering
self-adaptive
k-dist graph
blended MOOC
video viewing pattern
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进自适应DBSCAN的混合式MOOC视频观看模式挖掘
王若宾
耿芳东
张永梅
宋威
王伟锋
徐琳
《计算机工程与科学》
CSCD
北大核心
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部