期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于时空融合图网络学习的视频异常事件检测 被引量:11
1
作者 周航 詹永照 毛启容 《计算机研究与发展》 EI CSCD 北大核心 2021年第1期48-59,共12页
视频中异常事件所体现的时空特征存在着较强的相关关系.针对视频异常事件发生的时空特征相关性而影响检测性能问题,提出了基于时空融合图网络学习的视频异常事件检测方法,该方法针对视频片段的特征分别构建空间相似图和时间连续图,将各... 视频中异常事件所体现的时空特征存在着较强的相关关系.针对视频异常事件发生的时空特征相关性而影响检测性能问题,提出了基于时空融合图网络学习的视频异常事件检测方法,该方法针对视频片段的特征分别构建空间相似图和时间连续图,将各片段对应为图中的节点,考虑各节点特征与其他节点特征的Top-k相似性动态形成边的权重,构成空间相似图;考虑各节点的m个时间段内的连续性形成边的权重,构成时间连续图.将空间相似图和时间连续图进行自适应加权融合形成时空融合图卷积网络,并学习生成视频特征.在排序损失中加入图的稀疏项约束降低图模型的过平滑效应并提升检测性能.在UCF-Crime和ShanghaiTech等视频异常事件数据集上进行了实验,以接收者操作曲线(receiver operating characteristic curve,ROC)以及曲线下面积(area under curve,AUC)值作为性能度量指标.在UCF-Crime数据集下,提出的方法在AUC上达到80.76%,比基准线高5.35%;在ShanghaiTech数据集中,AUC达到89.88%,比同类最好的方法高5.44%.实验结果表明:所提出的方法可有效提高视频异常事件检测的性能. 展开更多
关键词 视频异常事件检测 空间相似图 时间连续图 自适应加权 图卷积网络
在线阅读 下载PDF
基于卷积自编码器分块学习的视频异常事件检测与定位 被引量:8
2
作者 李欣璐 吉根林 赵斌 《数据采集与处理》 CSCD 北大核心 2021年第3期489-497,共9页
视频异常事件检测与定位旨在检测视频中发生的异常事件,并锁定其在视频中发生的位置。但是视频场景复杂多样,并且异常发生的位置随机多变,导致发生的异常事件难以被精准定位。本文提出了一种基于卷积自编码器分块学习的视频异常事件检... 视频异常事件检测与定位旨在检测视频中发生的异常事件,并锁定其在视频中发生的位置。但是视频场景复杂多样,并且异常发生的位置随机多变,导致发生的异常事件难以被精准定位。本文提出了一种基于卷积自编码器分块学习的视频异常事件检测与定位方法,首先将视频帧进行均匀划分,提取视频帧中每一块的光流和方向梯度直方图(Histogram of oriented gradient,HOG)特征,然后为视频中的不同图块分别设计卷积自编码器以学习正常运动模式特征,最后在异常事件检测过程中利用卷积自编码器的重构误差大小进行异常判断。该方法可以有效地针对视频不同区域进行特征学习,提升了异常事件定位的准确度。所提方法在UCSD Ped1、UCSD Ped2、CUHK Avenue三个公开数据集上进行实验,结果表明该方法能够准确定位异常事件,并且帧级别AUC(Area under the curve)平均提升了5.61%。 展开更多
关键词 视频异常事件检测 异常事件定位 分块学习 卷积自编码器 深度学习
在线阅读 下载PDF
基于非局部注意力生成对抗网络的视频异常事件检测方法 被引量:4
3
作者 孙奇 吉根林 张杰 《计算机科学》 CSCD 北大核心 2022年第8期172-177,共6页
针对异常事件的不确定性,文中选择使用未来帧预测的方式对视频进行异常事件检测。通过正常样本对预测模型进行训练,使模型能够准确预测不包含异常事件的未来帧,但对于包含未知事件的视频帧,模型无法进行预测,利用生成对抗网络以及表观... 针对异常事件的不确定性,文中选择使用未来帧预测的方式对视频进行异常事件检测。通过正常样本对预测模型进行训练,使模型能够准确预测不包含异常事件的未来帧,但对于包含未知事件的视频帧,模型无法进行预测,利用生成对抗网络以及表观约束和运动约束对用于预测的生成器模型进行训练。为了减少相关目标特征丢失,提出了非局部注意力U型网络生成器(Nonlocal Attention Unet Generator,NA-UnetG)模型,提升了生成器的预测精度,同时提升了视频异常事件检测的准确度。通过公开数据集CUHK Avenue和UCSD Ped2对所提方法进行实验验证,实验结果表明,所提方法的AUC指标优于其他方法,AUC分别达到了83.4%和96.3%。 展开更多
关键词 视频异常事件检测 生成对抗网络 视频预测 非局部注意力机制 深度学习
在线阅读 下载PDF
基于双流残差网络的视频异常事件检测研究 被引量:3
4
作者 王梓旭 金立左 +2 位作者 张珊 苏国伟 陈瑞杰 《电光与控制》 CSCD 北大核心 2022年第8期88-93,共6页
针对传统视频异常事件检测算法准确率低、鲁棒性差等问题,提出了一种基于双流残差网络的视频异常事件检测算法。该算法综合运用深层残差网络、时序分割网络以及卷积融合策略。在传统双流网络利用单帧图像和多帧光流图像分别提取运动信... 针对传统视频异常事件检测算法准确率低、鲁棒性差等问题,提出了一种基于双流残差网络的视频异常事件检测算法。该算法综合运用深层残差网络、时序分割网络以及卷积融合策略。在传统双流网络利用单帧图像和多帧光流图像分别提取运动信息和时序行为的基础上,进一步加深网络深度,扩展运动信息建模能力;同时,利用分段构建网络的方式充分提取时序特征,提升对长时间视频处理效果;并且将高维时空特征进行融合,充分挖掘视频中的时空关联关系,得到最终检测结果。在公开的UCF-Crime和XD-Violence数据集上训练和验证的实验结果表明,提出的基于双流残差网络的视频异常事件检测算法相较于仅使用单模态网络(空间流网络)的方法准确率提升约10%,与传统双流网络相比,准确率也分别提升3.2%和6.1%。 展开更多
关键词 视频异常事件检测 多模态特征融合 残差网络 双流网络
在线阅读 下载PDF
基于时空依赖关系和特征融合的弱监督视频异常检测 被引量:1
5
作者 柳德云 李莹 +1 位作者 周震 吉根林 《数据采集与处理》 CSCD 北大核心 2024年第1期204-214,共11页
弱监督视频异常检测由于抗干扰性强、数据标注要求低,成为视频异常事件检测研究的热点。在现有的工作中,大多数弱监督视频异常检测方法认为各个视频段独立同分布,单独判断每个视频段是否异常,忽略了视频段间的时空依赖关系。为此,提出... 弱监督视频异常检测由于抗干扰性强、数据标注要求低,成为视频异常事件检测研究的热点。在现有的工作中,大多数弱监督视频异常检测方法认为各个视频段独立同分布,单独判断每个视频段是否异常,忽略了视频段间的时空依赖关系。为此,提出了一种基于时空依赖关系和特征融合的弱监督视频异常检测方法,在保留视频段原始特征的同时,使用视频段之间的索引距离和特征相似程度拟合视频段的时间和空间依赖关系,构建视频段的关系特征。通过融合原始特征和关系特征,更好地表达视频的动态特性和时序关系。在UCF-Crime和ShanghaiTech两个基准数据集上进行了大量实验,实验结果表明所提方法的AUC指标优于其他方法,AUC值分别达到了80.1%和94.6%。 展开更多
关键词 视频异常事件检测 时空依赖关系 特征融合 图卷积神经网络 注意力机制
在线阅读 下载PDF
基于自反馈最优子类挖掘的视频异常检测算法 被引量:1
6
作者 侯春萍 赵春月 王致芃 《计算机科学》 CSCD 北大核心 2021年第7期199-205,共7页
视频异常检测算法是视频处理领域的研究热点之一,用于检测视频中是否包含异常事件。然而,由于没有异常样本参与训练过程,且异常样本与正常样本之间存在一定程度的相似性,因此很难设计出一种有辨识力的异常检测模型。为了解决上述问题,... 视频异常检测算法是视频处理领域的研究热点之一,用于检测视频中是否包含异常事件。然而,由于没有异常样本参与训练过程,且异常样本与正常样本之间存在一定程度的相似性,因此很难设计出一种有辨识力的异常检测模型。为了解决上述问题,文中首先提出了一种基于相似度保持和样本恢复的特征选择方法,该方法能够保留正常样本的相似关系,进而可以学习到能够准确描述正常事件的特征。其次,将异常事件检测任务转化为分类任务,并提出了一种自反馈最优子类挖掘方法来获得最优分类器。如果一个测试样本被所有分类器判断为异常,则该样本最终将被判定为异常。在公共视频数据集(Avenue数据集、UCSD Ped2数据集)上进行的大量实验的结果表明,所提异常事件检测算法可以取得很好的结果。 展开更多
关键词 视频异常事件检测 特征选择 自反馈 最优子类挖掘 一类支持向量机
在线阅读 下载PDF
基于形态流的石油钻井水流异常检测 被引量:3
7
作者 李衍志 范勇 高琳 《计算机应用》 CSCD 北大核心 2021年第6期1842-1848,共7页
针对石油钻井水流的智能监控技术,可以实现石油钻井污染气体的自动监测,并最大限度地减少人工监测成本。针对现有特征提取方法不能描述水流形态变化过程,异常样本获取困难且不能完全列举,以及没有充分利用融合层信息的问题,提出了一种... 针对石油钻井水流的智能监控技术,可以实现石油钻井污染气体的自动监测,并最大限度地减少人工监测成本。针对现有特征提取方法不能描述水流形态变化过程,异常样本获取困难且不能完全列举,以及没有充分利用融合层信息的问题,提出了一种水流异常数据检测算法。首先,提出了一种新特征表示方法——形态流;然后,将经典的异常检测无监督神经网络GANomaly优化为残差结构;最后,在GANomaly的基础上增加了特征融合层,从而提升神经网络的学习能力。实验结果表明,改进后的算法检测精度达到了95%,相较GANomaly算法提升了5个百分点。所提算法能适用于不同场景下的水流异常数据检测,并能克服雾气对实验结果的影响。 展开更多
关键词 视频异常事件检测 石油钻井水流异常检测 生成对抗网络 水流分割
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部