为了提高自动驾驶汽车环境感知与安全性,构建高精度的环境地图,提出了基于双目视觉与惯性测量单元(Inertial Measurement Unit, IMU)的多源异构信息融合同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)算法。首先,针...为了提高自动驾驶汽车环境感知与安全性,构建高精度的环境地图,提出了基于双目视觉与惯性测量单元(Inertial Measurement Unit, IMU)的多源异构信息融合同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)算法。首先,针对双目视觉与IMU信息融合的问题,采用紧耦合方法,结合双目视觉传感器的深度感知能力和IMU的快速运动捕捉能力,在系统初始化过程中,引入了一次最大后验估计对双目相机与IMU进行处理;然后,在后端优化中,采用基于滑动窗口的非线性优化算法求解最优位姿;最后,通过自动驾驶试验平台搭建了SLAM系统实物验证平台,设计完成了SLAM系统定位试验和相关性能验证试验。结果表明,双目视觉与IMU信息融合的SLAM系统相较于单目视觉惯性融合(VINS-Fusion)算法的定位精度可提升30.34%,在试验和实际场景中均表现出了有效性。设计的多源异构信息融合的SLAM系统能够显著提升定位精度,且在交通安全环境中具有良好的应用前景,对于提高自动驾驶系统的性能和安全性具有重要意义。展开更多
移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据...移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据关键帧的位姿和深度数据,构建图像对应场景的点云地图;然后利用八叉树地图技术进行处理,构建出了适合于机器人应用的地图。将所提算法同RGB-D SLAM(RGB-Depth SLAM)算法、Elastic Fusion算法和ORB-SLAM(Oriented FAST and Rotated BRIEF SLAM)算法通过权威数据集进行了对比实验,实验结果表明,所提算法具有较高的有效性、精度和鲁棒性。最后,搭建了自主移动机器人,将改进的VSLAM系统应用到移动机器人中,能够实时地完成自主避障和三维地图构建,解决稀疏地图无法用于避障和导航的问题。展开更多
文摘为了提高自动驾驶汽车环境感知与安全性,构建高精度的环境地图,提出了基于双目视觉与惯性测量单元(Inertial Measurement Unit, IMU)的多源异构信息融合同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)算法。首先,针对双目视觉与IMU信息融合的问题,采用紧耦合方法,结合双目视觉传感器的深度感知能力和IMU的快速运动捕捉能力,在系统初始化过程中,引入了一次最大后验估计对双目相机与IMU进行处理;然后,在后端优化中,采用基于滑动窗口的非线性优化算法求解最优位姿;最后,通过自动驾驶试验平台搭建了SLAM系统实物验证平台,设计完成了SLAM系统定位试验和相关性能验证试验。结果表明,双目视觉与IMU信息融合的SLAM系统相较于单目视觉惯性融合(VINS-Fusion)算法的定位精度可提升30.34%,在试验和实际场景中均表现出了有效性。设计的多源异构信息融合的SLAM系统能够显著提升定位精度,且在交通安全环境中具有良好的应用前景,对于提高自动驾驶系统的性能和安全性具有重要意义。
文摘移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据关键帧的位姿和深度数据,构建图像对应场景的点云地图;然后利用八叉树地图技术进行处理,构建出了适合于机器人应用的地图。将所提算法同RGB-D SLAM(RGB-Depth SLAM)算法、Elastic Fusion算法和ORB-SLAM(Oriented FAST and Rotated BRIEF SLAM)算法通过权威数据集进行了对比实验,实验结果表明,所提算法具有较高的有效性、精度和鲁棒性。最后,搭建了自主移动机器人,将改进的VSLAM系统应用到移动机器人中,能够实时地完成自主避障和三维地图构建,解决稀疏地图无法用于避障和导航的问题。