无人车单一传感器同步定位与地图构建(simultaneous localization and mapping,SLAM)算法鲁棒性较差,现有多传感器融合方案则较少考虑车辆运动约束,导致横向定位漂移。为此,提出一种基于ORB-SLAM的视觉-惯性-车轮紧耦合优化方法,将三者...无人车单一传感器同步定位与地图构建(simultaneous localization and mapping,SLAM)算法鲁棒性较差,现有多传感器融合方案则较少考虑车辆运动约束,导致横向定位漂移。为此,提出一种基于ORB-SLAM的视觉-惯性-车轮紧耦合优化方法,将三者约束统一纳入后端的捆集优化(bundle adjustment,BA)。首先给出视觉里程计、惯性测量单元(inertial measurement unit,IMU)和基于阿克曼车辆模型的车轮里程计残差模型,然后建立基于ORB-SLAM的单目视觉-惯性-车轮融合的SLAM系统优化框架。在KAIST数据集和实际校园场景下的实验结果表明,与其他常用SLAM方法相比,本文改进算法有效减少了误差累积,定位与地图构建结果更稳健且精确。展开更多
视觉同步定位与建图(Simultaneous Localization and Mapping,SLAM)方法广泛应用于自动驾驶领域。传统的方法利用车载摄像头表征车辆周围环境,同时估计自身位置,当车辆运动过快时,定位精度和鲁棒性会下降。针对此问题,本文提出一种地图...视觉同步定位与建图(Simultaneous Localization and Mapping,SLAM)方法广泛应用于自动驾驶领域。传统的方法利用车载摄像头表征车辆周围环境,同时估计自身位置,当车辆运动过快时,定位精度和鲁棒性会下降。针对此问题,本文提出一种地图辅助的视-惯融合定位方法。该方法在ORB-SLAM2(Oriented FAST and Rotated BRIEF SLAM2)的基础上拓展地图保存功能,将建图和定位拆分为两个独立模块,车辆首先以较慢的速度构建并保存具有视觉特征的地图,然后,在第2次运行时车载计算机调用预先保存的地图实现精确且稳定的定位性能。由于构建地图阶段采用了图优化算法融合惯性测量单元(Inertial Measurement Unit,IMU)的信息,地图误差得到有效校正。在KITTI数据集场景和实际场景中验证了所提方法的良好性能。实验结果表明,所提方法在4,8,16 m·s^(-1)驾驶速度下的定位精度分别为2.59,2.61,2.73 m,图像失帧率和路径丢失率分别为3.76%和1.38%,3.89%和1.69%,4.27%和1.84%。相比原始的ORB-SLAM2方法,系统定位精度和鲁棒性均得到了提高。展开更多
文摘视觉同步定位与建图(Simultaneous Localization and Mapping,SLAM)方法广泛应用于自动驾驶领域。传统的方法利用车载摄像头表征车辆周围环境,同时估计自身位置,当车辆运动过快时,定位精度和鲁棒性会下降。针对此问题,本文提出一种地图辅助的视-惯融合定位方法。该方法在ORB-SLAM2(Oriented FAST and Rotated BRIEF SLAM2)的基础上拓展地图保存功能,将建图和定位拆分为两个独立模块,车辆首先以较慢的速度构建并保存具有视觉特征的地图,然后,在第2次运行时车载计算机调用预先保存的地图实现精确且稳定的定位性能。由于构建地图阶段采用了图优化算法融合惯性测量单元(Inertial Measurement Unit,IMU)的信息,地图误差得到有效校正。在KITTI数据集场景和实际场景中验证了所提方法的良好性能。实验结果表明,所提方法在4,8,16 m·s^(-1)驾驶速度下的定位精度分别为2.59,2.61,2.73 m,图像失帧率和路径丢失率分别为3.76%和1.38%,3.89%和1.69%,4.27%和1.84%。相比原始的ORB-SLAM2方法,系统定位精度和鲁棒性均得到了提高。