传统的视觉语言模型(visual language model,VLM)只考虑了相邻视觉单词之间的空间位置关系,不考虑不相邻视觉单词之间的贡献。针对传统视觉语言模型的不足,提出了一种N步长距离视觉语言模型,并将其用于图像分类。该方法首先给出了相隔N...传统的视觉语言模型(visual language model,VLM)只考虑了相邻视觉单词之间的空间位置关系,不考虑不相邻视觉单词之间的贡献。针对传统视觉语言模型的不足,提出了一种N步长距离视觉语言模型,并将其用于图像分类。该方法首先给出了相隔N个视觉单词的二元依赖关系,然后训练长距离视觉语言模型,最后通过不同的权重分配方式进行融合,得到3种不同的图像分类方法。实验比较了不同参数和分类方法对图像分类的影响,结果表明,文章方法能在一定程度上改善视觉语言模型对图像表达的准确度,进而提高图像分类的准确率。展开更多
【目的】本文旨在总结开源多模态大语言模型(Multimodal Large Language Model,MLLM)的最新进展,探索其在新闻领域的落地实践。【方法】首先,笔者介绍了MLLM的研究背景,对典型的开源和闭源模型在不同测试基准上的表现进行了对比,然后解...【目的】本文旨在总结开源多模态大语言模型(Multimodal Large Language Model,MLLM)的最新进展,探索其在新闻领域的落地实践。【方法】首先,笔者介绍了MLLM的研究背景,对典型的开源和闭源模型在不同测试基准上的表现进行了对比,然后解析了模型架构,包括其组成部分和工作原理,接着探讨了训练策略以及所需要的数据,最后展望了应用场景和研究方向。【结果/结论】通过本文的分析,可以了解到开源MLLM在赶超闭源商业模型上的潜力和发展方向,以及在新闻领域广阔的应用前景,同时为采编业务全流程提供强大的语言理解和生成能力,未来可以结合实际场景开展相关技术的落地实践。展开更多
随着自动驾驶、智能导航等领域的快速发展,对时空轨迹预测的准确性和鲁棒性的要求不断提高。传统轨迹预测方法主要依赖运动历史数据,忽略了环境中的语义信息,在复杂场景下往往难以取得理想的预测效果。对轨迹预测领域相关研究进行综述,...随着自动驾驶、智能导航等领域的快速发展,对时空轨迹预测的准确性和鲁棒性的要求不断提高。传统轨迹预测方法主要依赖运动历史数据,忽略了环境中的语义信息,在复杂场景下往往难以取得理想的预测效果。对轨迹预测领域相关研究进行综述,特别是基于空间语义分析的轨迹预测研究进展。重点探讨了视觉语言模型(Vision Language Model,VLM)和大语言模型(Large Language Model,LLM)在轨迹预测方面的应用,介绍了多种基于空间语义分析的轨迹预测模型。通过实验结果分析发现,VLM和LLM能够显著提升轨迹预测的准确率。基于空间语义分析的轨迹预测方法未来将考虑多模态融合、提升模型架构、提高推理速度等方向,以进一步提升大规模轨迹预测的性能。展开更多
文摘传统的视觉语言模型(visual language model,VLM)只考虑了相邻视觉单词之间的空间位置关系,不考虑不相邻视觉单词之间的贡献。针对传统视觉语言模型的不足,提出了一种N步长距离视觉语言模型,并将其用于图像分类。该方法首先给出了相隔N个视觉单词的二元依赖关系,然后训练长距离视觉语言模型,最后通过不同的权重分配方式进行融合,得到3种不同的图像分类方法。实验比较了不同参数和分类方法对图像分类的影响,结果表明,文章方法能在一定程度上改善视觉语言模型对图像表达的准确度,进而提高图像分类的准确率。
文摘【目的】本文旨在总结开源多模态大语言模型(Multimodal Large Language Model,MLLM)的最新进展,探索其在新闻领域的落地实践。【方法】首先,笔者介绍了MLLM的研究背景,对典型的开源和闭源模型在不同测试基准上的表现进行了对比,然后解析了模型架构,包括其组成部分和工作原理,接着探讨了训练策略以及所需要的数据,最后展望了应用场景和研究方向。【结果/结论】通过本文的分析,可以了解到开源MLLM在赶超闭源商业模型上的潜力和发展方向,以及在新闻领域广阔的应用前景,同时为采编业务全流程提供强大的语言理解和生成能力,未来可以结合实际场景开展相关技术的落地实践。
文摘随着自动驾驶、智能导航等领域的快速发展,对时空轨迹预测的准确性和鲁棒性的要求不断提高。传统轨迹预测方法主要依赖运动历史数据,忽略了环境中的语义信息,在复杂场景下往往难以取得理想的预测效果。对轨迹预测领域相关研究进行综述,特别是基于空间语义分析的轨迹预测研究进展。重点探讨了视觉语言模型(Vision Language Model,VLM)和大语言模型(Large Language Model,LLM)在轨迹预测方面的应用,介绍了多种基于空间语义分析的轨迹预测模型。通过实验结果分析发现,VLM和LLM能够显著提升轨迹预测的准确率。基于空间语义分析的轨迹预测方法未来将考虑多模态融合、提升模型架构、提高推理速度等方向,以进一步提升大规模轨迹预测的性能。