期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
基于稀疏直接法的水下单目视觉惯性里程计
1
作者 王益美 黄琰 冯浩 《测绘通报》 北大核心 2025年第1期94-100,共7页
针对水下视觉导航在弱纹理环境下定位精度低及稳健性较差的问题,本文提出了一种基于稀疏直接法的水下单目视觉惯性里程计。该方法基于像素灰度不变的假设,通过优化光度误差估计相机位姿,避免了特征点提取和匹配的复杂过程,从而提高了导... 针对水下视觉导航在弱纹理环境下定位精度低及稳健性较差的问题,本文提出了一种基于稀疏直接法的水下单目视觉惯性里程计。该方法基于像素灰度不变的假设,通过优化光度误差估计相机位姿,避免了特征点提取和匹配的复杂过程,从而提高了导航的实时性和稳健性;同时,结合惯性测量单元(IMU)的数据,利用误差状态卡尔曼滤波(ESKF)进行数据融合进一步减小误差,以提高自主水下机器人(AUV)在水下复杂环境导航的稳定性和精度。试验结果表明,误差达厘米级且与单纯的视觉算法相比,有所减小,证明了该系统能够有效融合视觉和惯性信息,在水下导航领域具有较高的精度和稳健性。 展开更多
关键词 稀疏直接法 自主水下机器人 惯性测量单元 视觉惯性里程计 误差状态卡尔曼滤波
在线阅读 下载PDF
一种基于多状态颜色一致性约束的激光-惯性-视觉里程计
2
作者 刘春明 于光远 +3 位作者 李琮 施鹏程 孙世颖 徐勇军 《电讯技术》 北大核心 2025年第1期119-126,共8页
基于视觉、激光等单一传感器的定位方法难以适应多样化的环境,围绕激光雷达、惯性测量单元和相机3种模态的传感器信息源,针对激光雷达(Light Detection and Ranging,LiDAR)与视觉测量没有充分关联的问题,提出了一种基于多状态颜色一致... 基于视觉、激光等单一传感器的定位方法难以适应多样化的环境,围绕激光雷达、惯性测量单元和相机3种模态的传感器信息源,针对激光雷达(Light Detection and Ranging,LiDAR)与视觉测量没有充分关联的问题,提出了一种基于多状态颜色一致性约束的激光雷达-惯性-视觉里程计方法,以提高系统的鲁棒性和定位精度。该方法紧耦合了激光雷达-惯性里程计(LiDAR-Inertial Odometry,LIO)和视觉-惯性里程计(Visual-Inertial Odometry,VIO)两个子系统,并定义了带有颜色信息的全局地图表示形式。LIO子系统中点云经过运动补偿后,直接用于构建点到面的残差。VIO子系统利用全局地图中点的深度信息,根据滑动窗口中多个相机状态观测到同一地图点颜色的一致性,构建光度误差约束,并通过不变扩展卡尔曼滤波(Extended Kalman Filter,EKF)状态估计器进行系统状态更新。在南洋理工大学发布的公共数据集上进行了实验,所提方法在该数据集不同序列上的绝对轨迹误差平均值为0.402 m。 展开更多
关键词 多传感器融合定位 状态估计 视觉-惯性里程计 激光-惯性里程计
在线阅读 下载PDF
复杂环境下无人机视觉惯性里程计设计
3
作者 汤琴琴 王立喜 +3 位作者 侍经纬 李春辉 刘云平 敖洋钒 《中国惯性技术学报》 北大核心 2025年第2期140-146,共7页
为提高无人机在快速移动、光照变化大等复杂环境下的位姿精度,设计了一种单目事件相机/单目标准相机/惯性测量装置(IMU)融合的视觉惯性里程计。首先利用IMU的角速度和视觉惯性里程计后端的线速度补偿事件帧的旋转和平移,生成高质量事件... 为提高无人机在快速移动、光照变化大等复杂环境下的位姿精度,设计了一种单目事件相机/单目标准相机/惯性测量装置(IMU)融合的视觉惯性里程计。首先利用IMU的角速度和视觉惯性里程计后端的线速度补偿事件帧的旋转和平移,生成高质量事件帧;其次采用BEBLID描述子提取算法增强事件帧和标准帧的特征匹配能力,使用基于帧的特征跟踪方法对事件帧和标准帧进行独立跟踪,结合随机抽样一致算法和三角测量进行深度估计,并以基于优化的方式将三种传感器进行紧耦合。最后在UZH-FPV数据集上进行了实验验证。实验结果表明,在明暗变化大的场景下,所提方法的无人机平均绝对定位误差相比PL-EVIO减小了19.6%;在高速场景下,相比Ultimate SLAM减小了46.9%。 展开更多
关键词 事件相机 视觉惯性里程计 运动补偿 图像匹配 无人机
在线阅读 下载PDF
一种实时动态特征点识别方法及其视觉惯性里程计应用
4
作者 曹龙 柳景斌 +1 位作者 张伟 李孟祥 《测绘通报》 北大核心 2025年第7期26-31,共6页
视觉惯性里程计是一种常用的定位技术。该技术是建立在静态环境假设的前提下,在动态环境中稳健性和定位精度会降低。由于使用语义分割或目标检测的方法对动态物体进行识别,存在无法识别未定义的动态物体、错误识别静止物体以及实时性差... 视觉惯性里程计是一种常用的定位技术。该技术是建立在静态环境假设的前提下,在动态环境中稳健性和定位精度会降低。由于使用语义分割或目标检测的方法对动态物体进行识别,存在无法识别未定义的动态物体、错误识别静止物体以及实时性差等问题。为此,本文提出了一种实时动态特征点识别方法,用于提高视觉惯性里程计在动态场景中的定位精度。首先,对图像中的特征点速度矢量进行聚类分析;然后,基于极线匹配误差,对特征点的运动状态进行估计,识别出高动态点并去除,为低动态点设置权重因子;最后,在多组公开的动态数据集中进行评估。与其他的视觉惯性里程计算法的对比结果表明,本文方法显著提高了视觉惯性里程计在动态环境下的定位精度。 展开更多
关键词 视觉惯性里程计 动态物体 定位 特征点 聚类分析 极线匹配误差
在线阅读 下载PDF
轻量的增强型激光雷达-惯性-视觉里程计系统
5
作者 杨颜光 钱建国 +2 位作者 于斌 郭洁 焦扬 《测绘通报》 北大核心 2025年第9期78-83,104,共7页
激光-惯性-视觉里程计(LIVO)在移动机器人和自动驾驶等领域展现出广泛的应用潜力。本文基于FAST-LIVO提出了一种轻量的增强型激光雷达-惯性-视觉里程计系统——LITE-LIVO。该系统通过集成激光雷达、惯性测量单元(IMU)和视觉传感器,实现... 激光-惯性-视觉里程计(LIVO)在移动机器人和自动驾驶等领域展现出广泛的应用潜力。本文基于FAST-LIVO提出了一种轻量的增强型激光雷达-惯性-视觉里程计系统——LITE-LIVO。该系统通过集成激光雷达、惯性测量单元(IMU)和视觉传感器,实现高效且实时的姿态估计与高精度地图构建;为提高系统在动态光照条件下的稳健性,引入一种基于深度学习的特征点提取方法和稀疏光流跟踪方法,并通过构建视觉观测残差,在卡尔曼滤波中融合视觉与激光雷达信息;此外,设计了紧耦合的视觉-惯性里程计(VIO)子系统,从激光雷达点云中筛选高质量视觉特征,同时更有效地管理视觉地图。试验结果表明,LITE-LIVO在多个公开数据集和实际场景中均表现出色,尤其在处理复杂环境和退化场景时展现了显著的优势。本文为激光-惯性-视觉里程计的发展提供了新的思路和方法,提高了多源数据融合的定位精度,增加了移动机器人的应用场景。 展开更多
关键词 激光-惯性-视觉里程计 深度学习 光流跟踪 卡尔曼滤波
在线阅读 下载PDF
基于互相关和旋转约束的视觉惯性里程计在线时间校准算法
6
作者 蒙军杰 熊军林 《计算机应用研究》 北大核心 2025年第1期288-292,共5页
在融合相机和惯性测量单元(IMU)的数据推测机器人的运动轨迹时,传感器测量记录的时间点对用于估计轨迹的视觉惯性里程计(VIO)的鲁棒性和准确性至关重要。然而,由于传感器数据到达接收端的延迟存在差异,图像数据流和IMU数据流之间通常存... 在融合相机和惯性测量单元(IMU)的数据推测机器人的运动轨迹时,传感器测量记录的时间点对用于估计轨迹的视觉惯性里程计(VIO)的鲁棒性和准确性至关重要。然而,由于传感器数据到达接收端的延迟存在差异,图像数据流和IMU数据流之间通常存在不可避免的时间偏置,为此提出了一种基于互相关和旋转对齐的视觉惯性里程计在线时间校准的算法。首先使用对极几何和预积分算法分别得到相机和IMU各自的相对位姿,并计算出相机的角速度;然后根据相机与IMU的角速度进行互相关计算,得到初步的时间偏置估计;最后利用相机和IMU相对位姿进行旋转约束,通过优化误差函数得到更精确的相对时间偏置估计,该时间偏置值随后用于平移传感器的时间轴以进行校准。实验表明,该算法能够减缓时间偏置对里程计精度带来的影响,并使得VIO能够在具有更大时间偏置范围的数据流下稳定运行。 展开更多
关键词 在线时间校准 旋转约束 视觉惯性里程计
在线阅读 下载PDF
模糊互补滤波的AGV视觉惯性里程计 被引量:1
7
作者 刘艳 王卓 《科学技术与工程》 北大核心 2024年第30期13048-13054,共7页
为提高自动导引车(automated guided vehicle,AGV)在复杂视觉环境下的定位性能、降低硬件成本,提出了一种基于AprilTag和模糊互补滤波的视觉惯性里程计(visual-Inertial Odometry,VIO)。采用扩展卡尔曼滤波器(extended Kalman filter,E... 为提高自动导引车(automated guided vehicle,AGV)在复杂视觉环境下的定位性能、降低硬件成本,提出了一种基于AprilTag和模糊互补滤波的视觉惯性里程计(visual-Inertial Odometry,VIO)。采用扩展卡尔曼滤波器(extended Kalman filter,EKF)融合陀螺仪、磁力计和编码器测量数据,计算航向角用于航位推算。通过对相机AprilTag识别距离和运动速度进行模糊推算获取标识权重,加权计算AprilTag进行视觉定位,减小多标识视觉定位误差。通过标识权重均值计算互补融合系数,将视觉定位和航位推算结果互补融合,提高VIO定位精度。实验结果表明,所提出的VIO在小型AGV的定位精度达到了41.84 mm,比惯性里程计和传统卡尔曼滤波的AprilTag-VIO分别提高了52.20%和20.75%。 展开更多
关键词 自动导引车 视觉惯性里程计 AprilTag 模糊算法 卡尔曼滤波 互补滤波
在线阅读 下载PDF
基于点转移矫正的视觉惯性里程计 被引量:3
8
作者 张梦龙 张凯杰 +2 位作者 刘昌林 周琦 李京波 《中国惯性技术学报》 EI CSCD 北大核心 2024年第2期146-152,共7页
针对卷帘相机的卷帘效应会引起图像扭曲,进而影响系统定位精度的问题,提出了一种融合IMU信息的点转移矫正的视觉惯性里程计。首先,针对卷帘图像扭曲问题,利用三焦点张量的点转移方法修正卷帘图像,相当于输入系统的是全局图像。其次,为... 针对卷帘相机的卷帘效应会引起图像扭曲,进而影响系统定位精度的问题,提出了一种融合IMU信息的点转移矫正的视觉惯性里程计。首先,针对卷帘图像扭曲问题,利用三焦点张量的点转移方法修正卷帘图像,相当于输入系统的是全局图像。其次,为了保证算法在嵌入式硬件上实时运行,采用扩展卡尔曼滤波进行信息融合来提高系统的定位精度和降低计算资源的要求。然后,引入静态检测和异常检测来保证系统的鲁棒性。最后,所提算法在手机上以25 Hz左右的帧率实时运行,并在真实环境下进行实验。公开数据集上的实验结果表明:与RS-VINS-Mono算法相比,所提算法的定位精度提升了27%,验证了该算法可有效融合视觉和惯性信息来减小卷帘效应带来的定位误差,提高了系统的鲁棒性。 展开更多
关键词 同步定位与地图构建 视觉惯性里程计 卷帘相机 扩展卡尔曼滤波器
在线阅读 下载PDF
融合事件的点线特征法视觉惯性里程计
9
作者 刘毓敏 蔡志浩 +2 位作者 孙家岭 赵江 王英勋 《兵工学报》 EI CAS CSCD 北大核心 2024年第11期3926-3937,共12页
视觉惯性里程计是机器人实现自主定位的关键技术,事件相机作为一种异步视觉传感器,与传统相机具有互补的特点。针对低光照、光照大幅度变化和高速运动场景,对事件相机的输出和传统图像进行融合,并结合惯性测量单元进行实时点线特征法视... 视觉惯性里程计是机器人实现自主定位的关键技术,事件相机作为一种异步视觉传感器,与传统相机具有互补的特点。针对低光照、光照大幅度变化和高速运动场景,对事件相机的输出和传统图像进行融合,并结合惯性测量单元进行实时点线特征法视觉惯性里程计研究。提出一种从事件流生成事件图像的算法,设计融合事件的点线特征检测方法;基于视觉-惯性紧耦合的思想,设计后端滑动窗口优化算法;进行数据集试验验证和无人机飞行试验验证。在数据集上的试验结果表明:与仅使用传统图像的点线特征法视觉惯性里程计相比,在高速运动的场景下,定位误差平均减少了22%以上;在低光照、光照大幅度变化的场景下,定位误差平均减少了59%以上。 展开更多
关键词 事件相机 点线特征 视觉惯性里程计 视觉同时定位与地图构建 位姿估计
在线阅读 下载PDF
Deep-Init:基于深度学习的视觉惯性里程计非联合初始化方法
10
作者 史殿习 高云琦 +3 位作者 宋林娜 刘哲 周晨磊 陈莹 《计算机科学》 CSCD 北大核心 2024年第7期327-336,共10页
对于非线性的单目VIO系统来说,其初始化过程至关重要,初始化结果的好坏直接影响整个系统运行过程中状态估计的精度。为此,将深度学习方法引入单目VIO系统的初始化过程中,提出了一种高效的非联合初始化方法(简称Deep-Init),其核心是使用... 对于非线性的单目VIO系统来说,其初始化过程至关重要,初始化结果的好坏直接影响整个系统运行过程中状态估计的精度。为此,将深度学习方法引入单目VIO系统的初始化过程中,提出了一种高效的非联合初始化方法(简称Deep-Init),其核心是使用深度神经网络对IMU中陀螺仪的偏置和噪声等随机误差项进行准确估计,得到初始化过程中的关键参数,即陀螺仪的bias;同时,将IMU预积分与SfM进行松耦合,通过位置和旋转对齐,使用最小二乘法对绝对尺度、速度以及重力矢量等进行快速恢复,并将其作为初始值来引导非线性紧密耦合的优化框架。由于深度神经网络对陀螺仪数据进行补偿,从而大大提高了IMU中旋转估计量的准确性,有效提高了IMU数据的信噪比,同时减少了最小二乘方程失效的次数,因此进一步减少了计算量。使用去除误差项的陀螺仪数据的预积分量替换SfM中的旋转量,将IMU的旋转量作为真值,不仅避免了将不准确的SfM值作为真值进行初始化时所带来的误差,有效提升了系统状态估计的精度,而且能够有效地适应高速运动、光照变换剧烈和纹理重复等SfM估计效果差的场景。在EuRoC数据集上,对所提方法的有效性了进行实验验证,实验结果表明,所提出的初始化方法Deep-Init无论是精度还是耗时均取得了良好的效果。 展开更多
关键词 视觉惯性里程计 深度学习 初始化 惯性测量单元
在线阅读 下载PDF
基于多旋翼无人机视觉惯性里程计的设计与实现
11
作者 廖士楠 王伟 王世勇 《兵工自动化》 北大核心 2024年第2期89-92,共4页
针对GNSS信号受到干扰或在拒止环境下,多旋翼无人机的导航定位问题,设计一种多旋翼无人机视觉惯性里程计系统。介绍系统的总体设计方案、硬件选型与设计、软件系统搭建、通信协议规定以及算法设计思路。实验验证结果表明:该系统可以实... 针对GNSS信号受到干扰或在拒止环境下,多旋翼无人机的导航定位问题,设计一种多旋翼无人机视觉惯性里程计系统。介绍系统的总体设计方案、硬件选型与设计、软件系统搭建、通信协议规定以及算法设计思路。实验验证结果表明:该系统可以实际运行在多旋翼无人机上,当GNSS信号不可用时,仍可向飞控实时提供多旋翼无人机当前可用位姿,为多旋翼无人机视觉辅助导航设计提供参考。 展开更多
关键词 多旋翼无人机 GNSS拒止 导航定位 视觉惯性里程计
在线阅读 下载PDF
融合点线特征的视觉-惯性-GNSS紧耦合导航定位方法
12
作者 贺黎明 岳峑佑 +1 位作者 曲政林 张宇 《东北大学学报(自然科学版)》 北大核心 2025年第4期124-133,共10页
针对复杂环境下单一传感器定位的局限性问题,提出一种多传感器融合的定位方法.在视觉方面,通过在点特征的基础上增加线特征,以克服视觉图像中重复纹理的干扰;在GNSS(global navigation satellite system)方面,通过引入精度更高的载波相... 针对复杂环境下单一传感器定位的局限性问题,提出一种多传感器融合的定位方法.在视觉方面,通过在点特征的基础上增加线特征,以克服视觉图像中重复纹理的干扰;在GNSS(global navigation satellite system)方面,通过引入精度更高的载波相位对伪距观测值进行平滑处理,以提高单点定位精度.利用公开数据集和实测数据分别对算法的精度和稳定性进行了验证.结果表明,在公开数据集和实测数据中,所提方法相比于GVINS(视觉-惯性-GNSS紧耦合的算法)在地心地固坐标系下的X,Y,Z 3个方向上,定位精度分别提高了32.2%,23.3%,24.5%和25.7%,25.8%,14.1%.此外,在卫星信号被严重遮挡的环境下,所提方法在一定时间内仍具有良好的定位性能,平面定位精度达到0.74 m,高程定位精度达到0.91 m.研究成果为复杂环境下的多传感器融合定位提供新思路. 展开更多
关键词 视觉惯性里程计 线特征 载波相位平滑伪距 图优化 紧耦合
在线阅读 下载PDF
顾及视觉地图点协方差的VIO/UWB融合室内定位算法 被引量:1
13
作者 高旺 何少鹏 +3 位作者 王澄非 潘树国 徐锦乐 朱道华 《中国惯性技术学报》 北大核心 2025年第3期239-248,共10页
针对室内复杂环境中弱纹理、光线变化和动态干扰所导致的里程计长航时定位精度下降、易发散等问题,提出了一种以惯导系统(INS)为主线的顾及视觉地图点协方差的视觉惯性里程计(VIO)/超宽带(UWB)融合室内定位算法。首先,对三维地图点协方... 针对室内复杂环境中弱纹理、光线变化和动态干扰所导致的里程计长航时定位精度下降、易发散等问题,提出了一种以惯导系统(INS)为主线的顾及视觉地图点协方差的视觉惯性里程计(VIO)/超宽带(UWB)融合室内定位算法。首先,对三维地图点协方差进行数学建模,估计视觉里程计中地图点在观测帧中的不确定性并计算对应的协方差。然后,根据协方差剔除动态不稳定的视觉地图点,求取剩余地图点的置信度,并作为优化权重加入到因子图中。最后,采用INS信息建立高频位姿主线,以其为先验对相机和UWB定位结果进行预测与抗差,将所有传感器数据以因子图优化的方法进行融合。在EuRoc数据集和真实环境室内数据集上进行验证,实验结果表明:所提VIO算法较VINS-MONO平均定位精度提升约37%以上,加入UWB的融合定位算法精度较VINS-MONO平均提升49%,能够在复杂室内环境中实现较高精度且连续稳定的定位。 展开更多
关键词 视觉惯性里程计 超宽带 多源融合定位 室内定位
在线阅读 下载PDF
基于迭代自适应的多状态约束视觉/惯性融合定位算法 被引量:1
14
作者 节笑晗 刘宁 +2 位作者 沈凯 戚文昊 刘薛勤 《太原理工大学学报》 北大核心 2025年第2期356-364,共9页
【目的】针对现有双目视觉/惯性里程计算法在遮蔽空间下救援人员进行定位计算时无法实时精准捕捉数据的问题,提出了一种迭代自适应多状态约束卡尔曼滤波双目视觉/惯性里程计算法(NN-MSCKF)。【方法】首先分析遮蔽空间下救援人员剧烈、... 【目的】针对现有双目视觉/惯性里程计算法在遮蔽空间下救援人员进行定位计算时无法实时精准捕捉数据的问题,提出了一种迭代自适应多状态约束卡尔曼滤波双目视觉/惯性里程计算法(NN-MSCKF)。【方法】首先分析遮蔽空间下救援人员剧烈、复杂运动的跟踪效率和实时性需求,设计迭代自适应算法,利用窗口数据迭代对激励进行判断,触发初始化条件构造量测更新;其次研究地图点个数和像素区分度评估与筛选方式,引入地图点优化机制,提高对地图点进行评估和筛选的实时性;最后搭建仿真与试验平台对算法进行验证。【结果】实验结果表明,该算法相比MSCKF算法实时性提高1 s,全局精度提升55%,局部精度提升88.9%,验证了本方法的有效性。 展开更多
关键词 视觉/惯性里程计 多状态约束 迭代自适应 地图点优化
在线阅读 下载PDF
基于惯性传感器和视觉里程计的机器人定位 被引量:67
15
作者 夏凌楠 张波 +1 位作者 王营冠 魏建明 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第1期166-172,共7页
针对机器人快速运动下,由运动模糊而导致视觉里程计定位估计精度下降的问题,结合惯性传感器和视觉里程计提出一种定位算法。该方法以扩展卡尔曼滤波(extended Kalman filter,EKF)为框架,利用惯性传感器的航位推算构建EKF的过程模型,视... 针对机器人快速运动下,由运动模糊而导致视觉里程计定位估计精度下降的问题,结合惯性传感器和视觉里程计提出一种定位算法。该方法以扩展卡尔曼滤波(extended Kalman filter,EKF)为框架,利用惯性传感器的航位推算构建EKF的过程模型,视觉里程计作为相对线速度和相对角速度传感器用来建模观测方程,同时考虑到机器人运动在平面上,在垂直方向和侧向方向不会产生跳动和滑动,利用这两个方向上瞬时速度为零的约束构建另外一个观测方程。提出的定位方法能够克服视觉定位和惯性定位的缺点,提高了定位精度。基于机器人实测数据进行实验,结果表明提出的算法优于单独采用惯性传感器和视觉里程计。 展开更多
关键词 机器人定位 惯性传感器 视觉里程计 扩展卡尔曼滤波
在线阅读 下载PDF
单目视觉里程计/惯性组合导航算法(英文) 被引量:15
16
作者 冯国虎 吴文启 +1 位作者 曹聚亮 宋敏 《中国惯性技术学报》 EI CSCD 北大核心 2011年第3期302-306,共5页
提出一种单目视觉里程计/捷联惯性组合导航定位算法。与视觉里程计估计相机姿态不同,惯导系统连续提供相机拍摄时刻对应的三维姿态,克服了单纯由视觉估计相机姿态精度低造成的长距离导航误差大的问题。通过配准和时间同步,用惯导系统解... 提出一种单目视觉里程计/捷联惯性组合导航定位算法。与视觉里程计估计相机姿态不同,惯导系统连续提供相机拍摄时刻对应的三维姿态,克服了单纯由视觉估计相机姿态精度低造成的长距离导航误差大的问题。通过配准和时间同步,用惯导系统解算的速度和视觉里程计计算的速度之差作为组合导航的观测量,采用Kalman滤波修正组合导航系统的误差,同时估计视觉里程计标度因数误差。分别在室内外不同环境下进行了22 m的推车实验和1412 m的跑车实验,定位误差分别为3.2%和4.0%。与Clark采用姿态传感器定期更新相机姿态估计结果的方法相比,单目视觉里程计/惯性组合导航定位精度更高,定位误差随距离增长率低,适合步行机器人或轮式移动机器人在复杂地形环境下车轮严重打滑时的自主定位导航。 展开更多
关键词 单目视觉里程计 捷联惯性组合导航系统 组合导航 标度因数
在线阅读 下载PDF
城市环境下视觉惯性里程计辅助PPP定位 被引量:2
17
作者 张守建 李欣然 +1 位作者 王逸石 徐博 《导航定位学报》 CSCD 2023年第6期34-41,101,共9页
针对复杂城市环境下,卫星信号容易受到遮蔽,精密单点定位(PPP)技术无法实现高精度连续定位,而视觉惯性里程计(VIO)可以提供连续的相对位置和速度,但其误差随时间累积,无法长时间独立提供高精度导航等问题,提出半紧组合VIO辅助PPP(VIO-P... 针对复杂城市环境下,卫星信号容易受到遮蔽,精密单点定位(PPP)技术无法实现高精度连续定位,而视觉惯性里程计(VIO)可以提供连续的相对位置和速度,但其误差随时间累积,无法长时间独立提供高精度导航等问题,提出半紧组合VIO辅助PPP(VIO-PPP)的定位方法:设计了VIO和PPP 2个滤波器;在VIO滤波器中,使用多状态约束下的卡尔曼滤波器来处理获取的视觉图像和惯性测量单元(IMU)观测数据,以预测位置和速度,并用PPP滤波器来修正预测值;同时根据定位精度因子和卫星的数量,在不同的环境中对PPP和VIO采取不同的加权策略;然后搭建全球卫星导航系统(GNSS)、惯性和视觉多源融合数据采集平台,对各传感器完成参数标定和时间同步,形成一套完整的城市环境下的高精度定位系统;最后在户外复杂环境中进行多组实验,比较VIO、PPP和VIO-PPP不同定位模式的定位结果。实验结果表明,多源融合导航系统可以显著提高导航性能,与PPP相比,VIO-PPP模型的精度能够提高40%以上,平面精度和高程精度分别可达到0.2和0.3 m。 展开更多
关键词 多源融合平台 参数标定 车载导航 半紧组合 精密单点定位(PPP) 视觉惯性里程计(vio)
在线阅读 下载PDF
复杂场景下基于关键帧选取与回环约束的视觉/惯性导航算法
18
作者 郝春霆 刘飞 +2 位作者 王坚 韩厚增 李艳东 《测绘通报》 北大核心 2025年第4期20-26,共7页
针对无人车在复杂场景下长时间运动时,前一帧图像误差会传播到下一帧中,导致视觉/惯性里程计算法出现误差累积的问题,本文提出一种基于关键帧回环约束的多状态约束卡尔曼滤波视觉/惯性里程计算法。首先,保留固定时间间隔关键帧的位姿,... 针对无人车在复杂场景下长时间运动时,前一帧图像误差会传播到下一帧中,导致视觉/惯性里程计算法出现误差累积的问题,本文提出一种基于关键帧回环约束的多状态约束卡尔曼滤波视觉/惯性里程计算法。首先,保留固定时间间隔关键帧的位姿,充分利用图像信息,有效地限制状态增长;然后,利用词袋模型进行回环检测,确定发生回环的关键帧,并将回环约束的观测量添加至特征追踪中进行测量更新;最后,在公开数据集和真实环境下进行验证分析。试验结果表明,本文算法相比于MSCKF算法,有效减少了定位误差且更加接近真实的运动轨迹,具有更高的定位精度和更好的稳健性。 展开更多
关键词 视觉惯性里程计 MSCKF 词袋模型 回环检测 关键帧
在线阅读 下载PDF
基于IMU预积分封闭解的单目视觉惯性里程计算法 被引量:10
19
作者 徐晓苏 吴贤 《中国惯性技术学报》 EI CSCD 北大核心 2020年第4期440-447,共8页
将扩展卡尔曼滤波器作为后端的视觉惯性里程计算法由于其在实时性高的同时能保持较高的精度,从而被广泛地用于实际环境中。针对如何快速精确处理两帧图像之间的IMU数据的问题,提出了一种基于IMU预积分封闭解的算法,相较于传统基于优化... 将扩展卡尔曼滤波器作为后端的视觉惯性里程计算法由于其在实时性高的同时能保持较高的精度,从而被广泛地用于实际环境中。针对如何快速精确处理两帧图像之间的IMU数据的问题,提出了一种基于IMU预积分封闭解的算法,相较于传统基于优化的视觉惯性里程计算法在分段常数加速近似下采用离散四元数积分来简化所需的预积分值,IMU预积分封闭解算法在IMU时间周期内求解解析解,并应用于多状态约束下的卡尔曼滤波器(MSCKF)视觉惯性里程计框架下,来提高系统定位的精度。针对MSCKF算法观测方程参数化方法存在的数值稳定性的问题,提出了一种逆深度的参数化方法,克服了MSCKF算法在空间点坐标z轴深度值趋近于零时,系统观测值会出现奇点的情况,有效增加系统的鲁棒性。在公开EuRoc数据集六个飞行序列上的试验结果表明,所提出算法相较于传统的MSCKF视觉惯性里程计算法漂移较小,均方根误差减少约36.5%,定位精度得到有效提升。 展开更多
关键词 多状态约束下卡尔曼滤波器 单目视觉惯性里程计 IMU预积分封闭解 逆深度参数化
在线阅读 下载PDF
移动机器人超宽带与视觉惯性里程计组合的室内定位算法 被引量:9
20
作者 申炳琦 张志明 舒少龙 《计算机应用》 CSCD 北大核心 2022年第12期3924-3930,共7页
对于移动机器人在室内环境的定位任务,新兴的基于视觉惯性里程计(VIO)的辅助定位技术受光线条件限制大,无法在黑暗环境中工作,且超宽带(UWB)定位易受非视距(NLOS)误差影响。针对以上问题,提出一种UWB与VIO组合的室内移动机器人定位算法... 对于移动机器人在室内环境的定位任务,新兴的基于视觉惯性里程计(VIO)的辅助定位技术受光线条件限制大,无法在黑暗环境中工作,且超宽带(UWB)定位易受非视距(NLOS)误差影响。针对以上问题,提出一种UWB与VIO组合的室内移动机器人定位算法。首先,采用立体视觉多状态约束下的Kalman滤波器(S-MSCKF)算法/双边双向测距(DS-TWR)算法和三边定位法,分别得到VIO输出的位置信息/UWB解算的定位信息;然后,建立位置测量系统的运动方程与观测方程;最后,通过误差状态扩展卡尔曼滤波(ES-EKF)算法来进行数据融合,得到机器人的最优位置估计。使用搭建的移动定位平台在不同的室内环境下对组合定位方算法进行验证。实验结果表明在有障碍物的室内环境下,与单一UWB定位方法相比,所提算法的总体定位的最大误差减小了约4.4%,均方误差减小了约6.3%;与VIO定位方法相比,所提算法的总体定位的最大误差减小了约31.5%,均方误差减小了约60.3%。可见所提算法可为室内环境下的移动机器人提供实时、精确且鲁棒的定位结果。 展开更多
关键词 室内定位 移动机器人 超宽带 视觉惯性里程计 卡尔曼滤波
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部