回环检测是消除同时定位与地图构建(simultaneous localization and mapping,SLAM)系统中累计误差的关键所在,在光照条件或视角变化较大的情况下,传统的基于外观的回环检测方法往往失效。针对这种情况,在ORBSLAM2的框架基础上提出一种...回环检测是消除同时定位与地图构建(simultaneous localization and mapping,SLAM)系统中累计误差的关键所在,在光照条件或视角变化较大的情况下,传统的基于外观的回环检测方法往往失效。针对这种情况,在ORBSLAM2的框架基础上提出一种物体级的回环检测方法。利用目标检测获得的语义信息和特征点信息构建物体级语义地图。将语义地图抽象成拓扑图并将地标抽象成节点,用颜色直方图描述节点信息,结合节点间的几何关系,基于语义和几何一致性约束,提出一种图匹配方法实现回环检测。当检测到回环时,通过物体对齐的方式进行回环校正。在公开的TUM和USTC数据集上进行实验,结果表明提出的系统精度较ORBSLAM2平均提高了49.58%,并且构建的语义地图显示出良好的定位效果。展开更多
针对移动机器人视觉同步定位以及地图构建(Simultaneous localization and mapping,SLAM)研究中存在精确度较低、实时性较差等问题,提出了一种用于移动机器人的RGB-D视觉SLAM算法。首先利用定向二进制简单描述符(Oriented fast and rota...针对移动机器人视觉同步定位以及地图构建(Simultaneous localization and mapping,SLAM)研究中存在精确度较低、实时性较差等问题,提出了一种用于移动机器人的RGB-D视觉SLAM算法。首先利用定向二进制简单描述符(Oriented fast and rotated brief,ORB)算法提取RGB图像的特征点,通过基于快速近似最邻近(Fast library for approximate nearest neighbors,FLANN)的双向邻近(K-nearest neighbor,KNN)特征匹配方法得到匹配点对集合,利用改进后的随机抽样一致性(Re-estimate random sample consensus,RE-RANSAC)算法剔除误匹配点,估计得到相邻图像间的6D运动变换模型,然后利用广义迭代最近点(Generalized iterative closest point,GICP)算法得到优化后的运动变换模型,进而求解得到相机位姿。为提高定位精度,引入随机闭环检测环节,减少了机器人定位过程中的累积误差,并采用全局图优化(General graph optimization,G2O)方法对相机位姿图进行优化,得到全局最优相机位姿和相机运动轨迹;最终通过点云拼接生成全局彩色稠密点云地图。针对所测试的FR1数据集,本文算法的最小定位误差为0.011 m,平均定位误差为0.024 5 m,每帧数据平均处理时间为0.032 s,满足移动机器人快速定位建图的需求。展开更多
为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度,结合特征点法精度高和光流法速度快的特点以及惯性信息,提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方...为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度,结合特征点法精度高和光流法速度快的特点以及惯性信息,提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方法。首先,改进快速特征点提取和描述(oriented fast and rotated brief, ORB)特征提取过程,采用多尺度网格化的方法提取ORB特征点并利用四叉树均匀分配特征点,提高特征分布离散性。其次,在帧间采用LK(Lucas and Kanade)光流法追踪特征点进行帧间的数据关联,在关键帧对特征点进行描述子的计算和匹配从而实现关键帧间的数据关联,保证算法速度的同时提高定位精度和鲁棒性。最后,基于光流法建立的数据关联得到的初始位姿为后端优化提供初始值,整合ORB特征点重投影误差、惯性测量单元(inertial measurement unit, IMU)预积分误差以及滑动窗口先验误差构建最小化目标函数采用滑动窗口非线性优化进行求解。实验表明,所提方法相比单目视觉惯性系统具有更高的定位精度和鲁棒性,定位精度平均提升16.7%。展开更多
文摘回环检测是消除同时定位与地图构建(simultaneous localization and mapping,SLAM)系统中累计误差的关键所在,在光照条件或视角变化较大的情况下,传统的基于外观的回环检测方法往往失效。针对这种情况,在ORBSLAM2的框架基础上提出一种物体级的回环检测方法。利用目标检测获得的语义信息和特征点信息构建物体级语义地图。将语义地图抽象成拓扑图并将地标抽象成节点,用颜色直方图描述节点信息,结合节点间的几何关系,基于语义和几何一致性约束,提出一种图匹配方法实现回环检测。当检测到回环时,通过物体对齐的方式进行回环校正。在公开的TUM和USTC数据集上进行实验,结果表明提出的系统精度较ORBSLAM2平均提高了49.58%,并且构建的语义地图显示出良好的定位效果。
文摘为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度,结合特征点法精度高和光流法速度快的特点以及惯性信息,提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方法。首先,改进快速特征点提取和描述(oriented fast and rotated brief, ORB)特征提取过程,采用多尺度网格化的方法提取ORB特征点并利用四叉树均匀分配特征点,提高特征分布离散性。其次,在帧间采用LK(Lucas and Kanade)光流法追踪特征点进行帧间的数据关联,在关键帧对特征点进行描述子的计算和匹配从而实现关键帧间的数据关联,保证算法速度的同时提高定位精度和鲁棒性。最后,基于光流法建立的数据关联得到的初始位姿为后端优化提供初始值,整合ORB特征点重投影误差、惯性测量单元(inertial measurement unit, IMU)预积分误差以及滑动窗口先验误差构建最小化目标函数采用滑动窗口非线性优化进行求解。实验表明,所提方法相比单目视觉惯性系统具有更高的定位精度和鲁棒性,定位精度平均提升16.7%。