为了提高自动驾驶汽车环境感知与安全性,构建高精度的环境地图,提出了基于双目视觉与惯性测量单元(Inertial Measurement Unit, IMU)的多源异构信息融合同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)算法。首先,针...为了提高自动驾驶汽车环境感知与安全性,构建高精度的环境地图,提出了基于双目视觉与惯性测量单元(Inertial Measurement Unit, IMU)的多源异构信息融合同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)算法。首先,针对双目视觉与IMU信息融合的问题,采用紧耦合方法,结合双目视觉传感器的深度感知能力和IMU的快速运动捕捉能力,在系统初始化过程中,引入了一次最大后验估计对双目相机与IMU进行处理;然后,在后端优化中,采用基于滑动窗口的非线性优化算法求解最优位姿;最后,通过自动驾驶试验平台搭建了SLAM系统实物验证平台,设计完成了SLAM系统定位试验和相关性能验证试验。结果表明,双目视觉与IMU信息融合的SLAM系统相较于单目视觉惯性融合(VINS-Fusion)算法的定位精度可提升30.34%,在试验和实际场景中均表现出了有效性。设计的多源异构信息融合的SLAM系统能够显著提升定位精度,且在交通安全环境中具有良好的应用前景,对于提高自动驾驶系统的性能和安全性具有重要意义。展开更多
现有大多数视觉同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)方法大部分基于静态环境假设,导致其在动态环境中的定位精度显著下降。为解决这一问题,本文提出一种结合目标检测和光流方法的对象级动态SLAM方法。该...现有大多数视觉同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)方法大部分基于静态环境假设,导致其在动态环境中的定位精度显著下降。为解决这一问题,本文提出一种结合目标检测和光流方法的对象级动态SLAM方法。该方法使用目标检测获取对象信息,结合光流和对象重投影技术来识别对象的动静属性,并剔除动态对象上的特征点。随后,寻找检测对象和地图中对象的最佳匹配关系。然后,在关键帧中优化静态对象,同时提出一种动态二次曲面优化策略,用于在对象地图中优化动态二次曲面模型,并追踪动态对象的运动轨迹。最后,重建稠密静态背景。在Bonn和TUM数据集上的实验表明,本文方法的绝对位姿精度提升约44.3%,相对位姿精度提升约19.0%。实验结果表明,本文方法在动态场景中能够实现更精确、更稳健的定位。为进一步验证系统的在线性能,本文还在真实动态场景中对该系统进行了测试,并达到了预期的结果。展开更多
在动态场景下,视觉同时定位与地图构建(simultaneous localization and mapping, SLAM)通常与深度学习方法结合提高系统的定位精度.针对深度学习方法运行时产生的时间延迟,导致系统难以达到流式处理要求的问题,提出一种面向动态场景下视...在动态场景下,视觉同时定位与地图构建(simultaneous localization and mapping, SLAM)通常与深度学习方法结合提高系统的定位精度.针对深度学习方法运行时产生的时间延迟,导致系统难以达到流式处理要求的问题,提出一种面向动态场景下视觉SLAM的流感知定位方法.首先针对传统评估指标只考虑定位精度的问题,提出流式评估指标,该指标同时考虑定位精度和时间延迟,能够准确反映系统的流式处理性能;其次针对传统视觉SLAM方法无法实现流式处理的问题,提出流感知的视觉定位方法,通过多线程并行和相机位姿预测相结合的方式,获得持续稳定的相机位姿输出.在BONN数据集和真实场景上的实验结果表明,所提方法能够有效地提升动态场景下采用深度学习方法的视觉定位的流性能.基于BONN数据集和流式评估方式的评估结果表明,与DynaSLAM方法对比,所提方法的绝对轨迹误差(APE),相对平移误差(RPE_trans)和相对旋转误差(RPE_angle)分别下降80.438%, 56.180%和54.676%.在真实场景下的实验结果表明,所提方法可以得到与实际相符的相机轨迹.展开更多
文摘为了提高自动驾驶汽车环境感知与安全性,构建高精度的环境地图,提出了基于双目视觉与惯性测量单元(Inertial Measurement Unit, IMU)的多源异构信息融合同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)算法。首先,针对双目视觉与IMU信息融合的问题,采用紧耦合方法,结合双目视觉传感器的深度感知能力和IMU的快速运动捕捉能力,在系统初始化过程中,引入了一次最大后验估计对双目相机与IMU进行处理;然后,在后端优化中,采用基于滑动窗口的非线性优化算法求解最优位姿;最后,通过自动驾驶试验平台搭建了SLAM系统实物验证平台,设计完成了SLAM系统定位试验和相关性能验证试验。结果表明,双目视觉与IMU信息融合的SLAM系统相较于单目视觉惯性融合(VINS-Fusion)算法的定位精度可提升30.34%,在试验和实际场景中均表现出了有效性。设计的多源异构信息融合的SLAM系统能够显著提升定位精度,且在交通安全环境中具有良好的应用前景,对于提高自动驾驶系统的性能和安全性具有重要意义。
文摘现有大多数视觉同步定位与地图构建(Simultaneous Localization and Mapping, SLAM)方法大部分基于静态环境假设,导致其在动态环境中的定位精度显著下降。为解决这一问题,本文提出一种结合目标检测和光流方法的对象级动态SLAM方法。该方法使用目标检测获取对象信息,结合光流和对象重投影技术来识别对象的动静属性,并剔除动态对象上的特征点。随后,寻找检测对象和地图中对象的最佳匹配关系。然后,在关键帧中优化静态对象,同时提出一种动态二次曲面优化策略,用于在对象地图中优化动态二次曲面模型,并追踪动态对象的运动轨迹。最后,重建稠密静态背景。在Bonn和TUM数据集上的实验表明,本文方法的绝对位姿精度提升约44.3%,相对位姿精度提升约19.0%。实验结果表明,本文方法在动态场景中能够实现更精确、更稳健的定位。为进一步验证系统的在线性能,本文还在真实动态场景中对该系统进行了测试,并达到了预期的结果。