针对同步定位与建图(Simultaneous Localization and Mapping,SLAM)算法在动态场景中存在的定位精度低且无法生成有效地图的问题,提出一种基于动态特征剔除与稠密建图的视觉SLAM算法。在ORB-SLAM3算法基础上新增特征点筛选线程,使用轻...针对同步定位与建图(Simultaneous Localization and Mapping,SLAM)算法在动态场景中存在的定位精度低且无法生成有效地图的问题,提出一种基于动态特征剔除与稠密建图的视觉SLAM算法。在ORB-SLAM3算法基础上新增特征点筛选线程,使用轻量化的YOLOV8网络检测环境中的动态物体,并结合光流法和对极几何约束剔除环境中的动态特征点。在新加入的稠密建图线程中利用生成的关键帧及计算出的位姿构建稠密点云地图。在公开的TUM数据集进行验证,相比于原ORB-SLAM3,各项定位误差下降达90%,同时在稠密建图结果中去除了动态物体所造成的重影。新算法通过加入的特征点筛选线程和稠密建图线程,有效地解决了视觉SLAM算法在动态环境中无法正常定位和建立有效地图的问题,极大增强了SLAM系统在动态场景中的精准度和鲁棒性。展开更多
针对传统视觉SLAM(simultaneous localization and mapping)在动态环境下定位精度较低、稳健性较差、结合深度学习后实时性较差及无法构建稠密地图的问题,本文提出了一种基于ORB-SLAM3的改进算法。首先,采用轻量化SegFormer语义分割网络...针对传统视觉SLAM(simultaneous localization and mapping)在动态环境下定位精度较低、稳健性较差、结合深度学习后实时性较差及无法构建稠密地图的问题,本文提出了一种基于ORB-SLAM3的改进算法。首先,采用轻量化SegFormer语义分割网络,对图像中存在的动态物体进行识别后,添加掩膜图像自适应膨胀方法,根据特征点数自动调整掩膜膨胀范围,更有效地保留静态特征点及去除潜在动态特征点;然后,改进词袋模型,提升算法的加载和匹配速度;最后,添加稠密建图线程,根据掩膜信息和关键帧,构建去除动态特征后的稠密点云地图。试验结果表明,该算法在动态场景下能够有效地剔除动态物体特征点,提高了系统的定位精度和稳健性,平均处理速度为20帧/s,基本满足实时运行的要求。展开更多
地下车库中纯视觉的即时定位与建图(simultaneous localization and mapping,SLAM)方法无法克服光线不足和弱特征纹理两大不利因素,为此,提出一种基于VINS-Mono框架下改进的视觉惯导融合算法,把原算法中提取Harris角点的方法改进为提取...地下车库中纯视觉的即时定位与建图(simultaneous localization and mapping,SLAM)方法无法克服光线不足和弱特征纹理两大不利因素,为此,提出一种基于VINS-Mono框架下改进的视觉惯导融合算法,把原算法中提取Harris角点的方法改进为提取灰度值陡变的像素点,并使用非线性优化方法在初始化阶段进行视觉位姿估计。后端采用滑动窗口的形式建立先验估计残差、惯性测量单元(inertial measurement unit,IMU)残差以及基于灰度值不变原理构建的视觉残差的联合残差模型,进一步提升了系统底层变量的优化效果,从而提高算法的定位准确度。通过基于EuRoc数据集的仿真实验和地下车库实际场景的实车实验,验证了所提算法的鲁棒性和精确性。展开更多
针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,提出一种16线激光雷达和惯性测量单元(inertial measurement unit, IMU)紧耦合的同时定位与建图(simultaneous localization and mapping, SLAM)算...针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,提出一种16线激光雷达和惯性测量单元(inertial measurement unit, IMU)紧耦合的同时定位与建图(simultaneous localization and mapping, SLAM)算法。首先,对IMU进行估计位姿,通过线性插值矫正激光点云的运动畸变;其次,通过曲率提取场景特征,并根据不同特征性质进行分类;再次,利用帧间匹配模块在滑动窗口内构建局部地图;最后,利用帧与局部地图匹配得到的距离和IMU数据构建联合优化函数。借助KITTI数据集和自行录制的园区数据集,对改进算法与主流的Lego-LOAM和同样使用紧耦合方案的LIO-Mapping进行分模块和整个系统的精度评定。实测结果表明,在符合里程计实时性的要求下,改进激光里程计精度高于Lego-LOAM和LIO-Mapping方案。展开更多
文摘针对同步定位与建图(Simultaneous Localization and Mapping,SLAM)算法在动态场景中存在的定位精度低且无法生成有效地图的问题,提出一种基于动态特征剔除与稠密建图的视觉SLAM算法。在ORB-SLAM3算法基础上新增特征点筛选线程,使用轻量化的YOLOV8网络检测环境中的动态物体,并结合光流法和对极几何约束剔除环境中的动态特征点。在新加入的稠密建图线程中利用生成的关键帧及计算出的位姿构建稠密点云地图。在公开的TUM数据集进行验证,相比于原ORB-SLAM3,各项定位误差下降达90%,同时在稠密建图结果中去除了动态物体所造成的重影。新算法通过加入的特征点筛选线程和稠密建图线程,有效地解决了视觉SLAM算法在动态环境中无法正常定位和建立有效地图的问题,极大增强了SLAM系统在动态场景中的精准度和鲁棒性。
文摘针对传统视觉SLAM(simultaneous localization and mapping)在动态环境下定位精度较低、稳健性较差、结合深度学习后实时性较差及无法构建稠密地图的问题,本文提出了一种基于ORB-SLAM3的改进算法。首先,采用轻量化SegFormer语义分割网络,对图像中存在的动态物体进行识别后,添加掩膜图像自适应膨胀方法,根据特征点数自动调整掩膜膨胀范围,更有效地保留静态特征点及去除潜在动态特征点;然后,改进词袋模型,提升算法的加载和匹配速度;最后,添加稠密建图线程,根据掩膜信息和关键帧,构建去除动态特征后的稠密点云地图。试验结果表明,该算法在动态场景下能够有效地剔除动态物体特征点,提高了系统的定位精度和稳健性,平均处理速度为20帧/s,基本满足实时运行的要求。
文摘针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,提出一种16线激光雷达和惯性测量单元(inertial measurement unit, IMU)紧耦合的同时定位与建图(simultaneous localization and mapping, SLAM)算法。首先,对IMU进行估计位姿,通过线性插值矫正激光点云的运动畸变;其次,通过曲率提取场景特征,并根据不同特征性质进行分类;再次,利用帧间匹配模块在滑动窗口内构建局部地图;最后,利用帧与局部地图匹配得到的距离和IMU数据构建联合优化函数。借助KITTI数据集和自行录制的园区数据集,对改进算法与主流的Lego-LOAM和同样使用紧耦合方案的LIO-Mapping进行分模块和整个系统的精度评定。实测结果表明,在符合里程计实时性的要求下,改进激光里程计精度高于Lego-LOAM和LIO-Mapping方案。