期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多模态融合Transformer的视听广义零次学习方法
1
作者 杨静 李小勇 +3 位作者 阮小利 李少波 唐向红 徐计 《电子与信息学报》 北大核心 2025年第7期2375-2384,共10页
视听零次学习需要理解音频和视觉信息之间的关系,以便能够推理未见过的类别。尽管领域做出了许多努力并取得了重大进展,但往往专注于学习强大的表征,从而忽视了音频和视频之间的依赖关系和输出分布与目标分布不一致的问题。因此,该文提... 视听零次学习需要理解音频和视觉信息之间的关系,以便能够推理未见过的类别。尽管领域做出了许多努力并取得了重大进展,但往往专注于学习强大的表征,从而忽视了音频和视频之间的依赖关系和输出分布与目标分布不一致的问题。因此,该文提出了基于Transformer的视听广义零次学习方法。具体来说,使用注意力机制来学习数据的内部信息,增强不同模态的信息交互,以捕捉视听数据之间的语义一致性;为了度量不同概率分布之间的差异和类别之间的一致性,引入了Kullback-Leibler(KL)散度和余弦相似度损失。为了评估所提方法,在VGGSound-GZSL^(cls),UCF-GZSL^(cls)和ActivityNet-GZSL^(cls)3个基准数据集上进行测试。大量的实验结果表明,所提方法在3个数据集上都取得了最先进的性能。 展开更多
关键词 视听零次学习 视频分类 注意力机制 KL散度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部