针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分...针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分类;其次,训练卷积神经网络,利用训练完成的神经网络提取不同类别医疗图像区域特征,以此为基础计算区域距离,寻找出相似度最小的区域,完成图像可疑区域定位;再次,融合多评价标准生成特征子集,从中搜索得到最优特征子集,完成可疑区域图像特征选择;最后,以选择得到的特征区域像素点作为训练样本,建立预测样本与训练样本之间的多元线性回归矩阵,实现误差预测.实验结果表明,所提算法的集成规则适应度较高,分类性能好,区域距离计算准确率高达95%左右,特征选择的AUC值(Area Under Curve)高,且预测结果拟合度和预测耗时均优于传统算法.展开更多
In order to make full use of the driver’s long-term driving experience in the process of perception, interaction and vehicle control of road traffic information, a driving behavior rule extraction algorithm based on ...In order to make full use of the driver’s long-term driving experience in the process of perception, interaction and vehicle control of road traffic information, a driving behavior rule extraction algorithm based on artificial neural network interface(ANNI) and its integration is proposed. Firstly, based on the cognitive learning theory, the cognitive driving behavior model is established, and then the cognitive driving behavior is described and analyzed. Next, based on ANNI, the model and the rule extraction algorithm(ANNI-REA) are designed to explain not only the driving behavior but also the non-sequence. Rules have high fidelity and safety during driving without discretizing continuous input variables. The experimental results on the UCI standard data set and on the self-built driving behavior data set, show that the method is about 0.4% more accurate and about 10% less complex than the common C4.5-REA, Neuro-Rule and REFNE. Further, simulation experiments verify the correctness of the extracted driving rules and the effectiveness of the extraction based on cognitive driving behavior rules. In general, the several driving rules extracted fully reflect the execution mechanism of sequential activity of driving comprehensive cognition, which is of great significance for the traffic of mixed traffic flow under the network of vehicles and future research on unmanned driving.展开更多
文摘针对传统医疗图像误差预测算法无法很好的选择图像特征,存在图像误差预测值与实际值拟合度低、预测耗时长等问题,提出基于卷积神经网络与特征选择的医疗图像误差预测算法.首先,选取5种集成规则构建自适应多分类器,对医疗图像区域进行分类;其次,训练卷积神经网络,利用训练完成的神经网络提取不同类别医疗图像区域特征,以此为基础计算区域距离,寻找出相似度最小的区域,完成图像可疑区域定位;再次,融合多评价标准生成特征子集,从中搜索得到最优特征子集,完成可疑区域图像特征选择;最后,以选择得到的特征区域像素点作为训练样本,建立预测样本与训练样本之间的多元线性回归矩阵,实现误差预测.实验结果表明,所提算法的集成规则适应度较高,分类性能好,区域距离计算准确率高达95%左右,特征选择的AUC值(Area Under Curve)高,且预测结果拟合度和预测耗时均优于传统算法.
基金Project(2017YFB0102503)supported by the National Key Research and Development Program of ChinaProjects(U1664258,51875255,61601203)supported by the National Natural Science Foundation of China+1 种基金Projects(DZXX-048,2018-TD-GDZB-022)supported by the Jiangsu Province’s Six Talent Peak,ChinaProject(18KJA580002)supported by Major Natural Science Research Project of Higher Learning in Jiangsu Province,China
文摘In order to make full use of the driver’s long-term driving experience in the process of perception, interaction and vehicle control of road traffic information, a driving behavior rule extraction algorithm based on artificial neural network interface(ANNI) and its integration is proposed. Firstly, based on the cognitive learning theory, the cognitive driving behavior model is established, and then the cognitive driving behavior is described and analyzed. Next, based on ANNI, the model and the rule extraction algorithm(ANNI-REA) are designed to explain not only the driving behavior but also the non-sequence. Rules have high fidelity and safety during driving without discretizing continuous input variables. The experimental results on the UCI standard data set and on the self-built driving behavior data set, show that the method is about 0.4% more accurate and about 10% less complex than the common C4.5-REA, Neuro-Rule and REFNE. Further, simulation experiments verify the correctness of the extracted driving rules and the effectiveness of the extraction based on cognitive driving behavior rules. In general, the several driving rules extracted fully reflect the execution mechanism of sequential activity of driving comprehensive cognition, which is of great significance for the traffic of mixed traffic flow under the network of vehicles and future research on unmanned driving.