期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进U-Net模型的保护性耕作田间秸秆覆盖检测 被引量:5
1
作者 刘媛媛 周小康 +3 位作者 王跃勇 于海业 庚晨 何铭 《光学精密工程》 EI CAS CSCD 北大核心 2022年第9期1101-1112,共12页
为了适应保护性耕作秸秆还田监测的技术需求,提出了一种改进的U-Net语义分割算法对秸秆覆盖率进行检测。首先,提出一种新的卷积模块代替原始U-Net框架中的卷积模块;其次,改进Inception结构,引入条纹池化和高效空间金字塔空洞卷积模块,... 为了适应保护性耕作秸秆还田监测的技术需求,提出了一种改进的U-Net语义分割算法对秸秆覆盖率进行检测。首先,提出一种新的卷积模块代替原始U-Net框架中的卷积模块;其次,改进Inception结构,引入条纹池化和高效空间金字塔空洞卷积模块,形成新的Gception结构;最后,在模块中引入注意力机制。利用无人机采集田间地表图像,将改进的U-Net模型应用于自标注田间秸秆图像分割,与U-Net,PSP-Net,Link-Net,Res-Net,DSRA-Unet和DE-GWO算法进行对比实验,得到的平均交并比为80.05%,平均像素精确度为91.20%,覆盖率平均误差为0.80%。实验结果表明,改进U-Net模型的分割结果优于对比算法,能够保证特征提取的有效性和全局特征的完备性,有效剔除树影以及田内其他干扰因素。该模型适用于含有农机和树影等干扰的田间复杂场景,在大尺度图像中亦可获得较好的分割效果,可为大面积秸秆覆盖率检测提供技术支持。 展开更多
关键词 秸秆图像 覆盖率检测 语义分割 U-Net模型 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部