期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Band gap modulation of nanostructured WO_(3) nanoplate film by Ti doping for enhanced photoelectrochemical performance 被引量:2
1
作者 TANG Ya-qin JIANG Di +8 位作者 WANG Huan ZHENG Hong-ye REN Lu-jun WEI Kui-xian MA Wen-hui DAI Yong-nian LUO Da-jun ZHANG Xue-liang LIU Yi-ke 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2968-2979,共12页
Despite being a promising photoanode material for water splitting,WO_(3) has low conductivity,high onset potential,and sluggish water oxidation kinetics.In this study,we designed Ti-doped WO_(3) nanoplate arrays on fl... Despite being a promising photoanode material for water splitting,WO_(3) has low conductivity,high onset potential,and sluggish water oxidation kinetics.In this study,we designed Ti-doped WO_(3) nanoplate arrays on fluoride-doped tin oxide by a seed-free hydrothermal method,and the effects of doping on the photoelectrochemical performance were investigated.The optimal Ti-doped WO_(3) electrode achieved a photocurrent density of 0.53 mA/cm^(2) at 0.6 V(vs Ag/AgCl),110%higher than that of pure WO_(3) nanoplate arrays.Moreover,a significant cathodic shift in the onset potential was observed after doping.X-ray photoelectron spectroscopy valence band and ultraviolet–visible spectra revealed that the band positions of Ti-doped WO_(3) photoanodes moved upward,yielding a lower onset potential.Furthermore,electrochemical impedance spectroscopy measurements revealed that the conductivities of the WO_(3) photoanodes improved after doping,because of the rapid separation of photo-generated charge carriers.Thus,we report a new design route toward efficient and low-cost photoanodes for photoelectrochemical applications. 展开更多
关键词 WO_(3) Ti doping PHOTOANODE band structure engineering surface charge separation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部