期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
45钢高速铣削表面粗糙度预测 被引量:17
1
作者 段春争 郝清龙 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2015年第9期1229-1233,共5页
为了提高高速铣削加工表面粗糙度预测的精确性以及模型的通用性,提出了一种基于粒子群最小二乘支持向量机(PSO-LSSVM)算法的高速铣削加工表面粗糙度预测方法。以工件硬度以及铣削参数为影响因素,采用回归分析方法、最小二乘支持向量机(L... 为了提高高速铣削加工表面粗糙度预测的精确性以及模型的通用性,提出了一种基于粒子群最小二乘支持向量机(PSO-LSSVM)算法的高速铣削加工表面粗糙度预测方法。以工件硬度以及铣削参数为影响因素,采用回归分析方法、最小二乘支持向量机(LSSVM)以及PSO-LSSVM方法,分别建立了45钢高速铣削加工表面粗糙度预测模型,并对模型的预测精度进行了试验验证和对比分析。结果表明:相同样本条件下,回归分析方法的预测误差较大,PSO-LSSVM预测模型平均预测误差仅为LSSVM方法平均预测误差的50%。PSO-LSSVM预测模型具有较高的预测精度和泛化能力,能够准确地预测高速铣削不同硬度的工件表面粗糙度,同时为铣削参数的选择和表面质量的控制提供了依据。 展开更多
关键词 表面粗糙度预测 高速铣削 最小二乘支持向量机 粒子群算法 回归分析 预测精度 45钢
在线阅读 下载PDF
基于MEA-BP神经网络的超声挤压加工表面粗糙度预测 被引量:4
2
作者 陈爽 张志 +2 位作者 肖锦初 胡家进 赵录冬 《河南理工大学学报(自然科学版)》 CAS 北大核心 2021年第5期104-109,共6页
为了有效预测超声挤压加工工件的表面粗糙度,建立以转速,进给速度,振幅,挤压力,挤压次数为输入参数,表面粗糙度为输出结果的预测模型。该模型利用思维进化算法(mind evolutionary algorithm,MEA)的全局搜索能力对BP神经网络的权值和阈... 为了有效预测超声挤压加工工件的表面粗糙度,建立以转速,进给速度,振幅,挤压力,挤压次数为输入参数,表面粗糙度为输出结果的预测模型。该模型利用思维进化算法(mind evolutionary algorithm,MEA)的全局搜索能力对BP神经网络的权值和阈值进行优化。为了验证该模型的有效性,对45号钢进行超声挤压加工后,使用BP神经网络进行预测,通过引入思维进化算法(MEA)和遗传算法(GA)优化BP神经网络的权值和阈值,并对3种模型的预测精度进行对比分析。结果表明:在相同的实验条件下,MEA-BP模型的预测结果最精准,与BP神经网络相比,该模型精度高,运行速度快。 展开更多
关键词 超声挤压加工 表面粗糙度预测 思维进化算法 BP神经网络 预测精度
在线阅读 下载PDF
基于GA-WPT-ELM的6061铝合金表面粗糙度预测 被引量:10
3
作者 谭芳芳 朱俊江 +2 位作者 严天宏 高志强 何岭松 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第1期40-47,共8页
为了提高工件表面粗糙度预测的准确性,针对振动信号特征识别和表面粗糙度预测建模时多个参数难以同步优化和人工经验调优误差较大的问题,提出基于遗传算法(GA)的信号特征识别和表面粗糙度预测的优化算法.对采集的6061铝合金铣削振动信... 为了提高工件表面粗糙度预测的准确性,针对振动信号特征识别和表面粗糙度预测建模时多个参数难以同步优化和人工经验调优误差较大的问题,提出基于遗传算法(GA)的信号特征识别和表面粗糙度预测的优化算法.对采集的6061铝合金铣削振动信号进行小波包变换(WPT)和多个特征提取,利用GA优化WPT母小波和特征向量;将信号特征向量和表面粗糙度分别作为极限学习机(ELM)的输入和输出,对预测模型训练的同时,利用GA优化ELM隐含层的神经元个数;对训练好的预测模型进行测试.实验结果表明,通过GA对振动信号识别和表面粗糙度预测的3类参数同步优化,获得了最佳的信号特征和较高的表面粗糙度预测精度,节省了建模分析计算成本. 展开更多
关键词 在线振动信号 遗传算法(GA) 小波包变换 极限学习机(ELM) 表面粗糙度预测
在线阅读 下载PDF
医用氧化锆陶瓷磨削表面粗糙度的声发射智能预测
4
作者 李波 郭力 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第3期571-576,共6页
医用氧化锆陶瓷(Y-TZP)是较好的齿科修复体材料,为了得到较好的齿科修复体性能对于其制造精度特别是表面粗糙度的要求比较高,但其是硬脆难加工材料,为了提高医用氧化锆陶瓷磨削加工表面质量和加工效率,在对医用氧化锆陶瓷磨削过程中的... 医用氧化锆陶瓷(Y-TZP)是较好的齿科修复体材料,为了得到较好的齿科修复体性能对于其制造精度特别是表面粗糙度的要求比较高,但其是硬脆难加工材料,为了提高医用氧化锆陶瓷磨削加工表面质量和加工效率,在对医用氧化锆陶瓷磨削过程中的声发射信号分频段进行相关性分析的基础上,提取磨削声发射840~850kHz敏感频段信号中与磨削表面粗糙度强相关的12组特征值,构建了具有较高预测精度的随机森林神经网络,最终医用氧化锆陶瓷磨削表面粗糙度声发射预测最大相对误差低于8.37%,研究结果对医用氧化锆陶瓷磨削表面粗糙度在线智能监测有较大的参考价值。 展开更多
关键词 医用氧化锆陶瓷 磨削声发射 表面粗糙度预测 随机森林神经网络 相关性系数
在线阅读 下载PDF
基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度智能预测 被引量:5
5
作者 郭力 郑良瑞 冯浪 《南京航空航天大学学报》 CAS CSCD 北大核心 2023年第3期401-409,共9页
部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向... 部分稳定氧化锆(Partially stabilized zirconia,PSZ)陶瓷因其优越的性能在航空航天工业等领域有广泛的应用。表面粗糙度是评价PSZ陶瓷磨削加工水平的关键指标,为了降低磨削表面粗糙度的预测误差,提出了一种基于相关性分析与卷积-双向长短期记忆神经网络(Convolution-bidirectional long short term memory neural network,CNN-BiLSTM)的PSZ陶瓷磨削表面粗糙度声发射预测模型。通过分析磨削声发射信号特征值与磨削表面粗糙度值之间相关性,筛选出磨削声发射信号与磨削表面粗糙度之间的最相关频段和特征矩阵,作为CNN-BiLSTM神经网络的输入参数以降低磨削表面粗糙度声发射预测的误差。研究结果表明,基于相关性分析与CNN-BiLSTM神经网络的PSZ陶瓷磨削表面粗糙度的平均预测误差低于3.92%。 展开更多
关键词 部分稳定氧化锆 磨削声发射 相关性分析 卷积-双向长短期记忆神经网络 表面粗糙度预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部