The wave diffraction and radiation around a floating body is considered within the framework of the linear potential theory in a fairly perfect fluid. The fluid domain extended infinitely in the horizontal directions ...The wave diffraction and radiation around a floating body is considered within the framework of the linear potential theory in a fairly perfect fluid. The fluid domain extended infinitely in the horizontal directions but is limited by the sea bed, the body hull, and the part of the free surface excluding the body waterplane, and is subdivided into two subdomains according to the body geometry. The two subdomains are connected by a control surface in fluid. In each subdomain, the velocity potential is described by using the usual boundary integral representation involving Green functions. The boundary integral equations are then established by satisfying the boundary conditions and the continuous condition of the potential and the normal derivation across the control surface. This multi-domain boundary element method (MDBEM) is particularly interesting for bodies with a hull form including moonpools to which the usual BEM presents singularities and slow convergence of numerical results. The application of the MDBEM to study the resonant motion of a water column in moonpools shows that the MDBEM provides an efficient and reliable prediction method.展开更多
A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The disconti...A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green's second identity to the potential functions and appropriate Green's functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.展开更多
文摘The wave diffraction and radiation around a floating body is considered within the framework of the linear potential theory in a fairly perfect fluid. The fluid domain extended infinitely in the horizontal directions but is limited by the sea bed, the body hull, and the part of the free surface excluding the body waterplane, and is subdivided into two subdomains according to the body geometry. The two subdomains are connected by a control surface in fluid. In each subdomain, the velocity potential is described by using the usual boundary integral representation involving Green functions. The boundary integral equations are then established by satisfying the boundary conditions and the continuous condition of the potential and the normal derivation across the control surface. This multi-domain boundary element method (MDBEM) is particularly interesting for bodies with a hull form including moonpools to which the usual BEM presents singularities and slow convergence of numerical results. The application of the MDBEM to study the resonant motion of a water column in moonpools shows that the MDBEM provides an efficient and reliable prediction method.
基金Partially Supported by a DST Research Project to RG(No.SR/FTP/MS-020/2010)
文摘A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green's second identity to the potential functions and appropriate Green's functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.