Mesoporous CeO2 was first synthesized by hydrothermal method,and then used to synthesize different contents of CuO)x/CeO2(x:molar ratio of Cu to Ce) by deposition-precipitation method.These materials were characterize...Mesoporous CeO2 was first synthesized by hydrothermal method,and then used to synthesize different contents of CuO)x/CeO2(x:molar ratio of Cu to Ce) by deposition-precipitation method.These materials were characterized by X-ray diffraction(XRD),N2 adsorption and desorption,H2 temperature programmed reduction(H2-TPR) and O2 temperature programmed desorption(O2-TPD) to study the crystal structure,surface area,and the mechanism of CO oxidation.The results show that,on XRD patterns,no evidence of CuO diffraction peaks is present until Cu loading is increased to 20%.The BET surface area decreases noticeably with the increase of Cu content.Compared with other samples,the better reducibility and activity oxygen species of(CuO)10%/CeO2coincide with its better catalytic activity.展开更多
Reduced graphene oxide(RGO) sheets with varied contents and types of oxygenated groups were synthesized by Hummers treatment of natural graphite powders followed by different nontoxic and mild reduction methods, which...Reduced graphene oxide(RGO) sheets with varied contents and types of oxygenated groups were synthesized by Hummers treatment of natural graphite powders followed by different nontoxic and mild reduction methods, which include thermal and chemical reduction with ethylene glycol, KOH and Fe powder. The changes in microstructure and surface chemistry of RGOs were extensively characterized by SEM, TEM, AFM, XRD, XPS and Raman spectrum. The results show that significant exfoliation occurs during oxidation and is retained in reduction processes, along with the formation of curled wavy morphology. Compared with large d spacing(0.852 nm) of graphene oxide(GO), the(002) plane distance decreases to 0.358-0.384 nm of RGOs, indicating efficient tuning of surface functionalities through mild reduction methods. The ID/IG ratio of RGOs is about 1.0-1.15, indicating that reconstructed sp^2 domains have smaller sizes and larger quantity. The content of sp^2 bonded C in GO(36.93%, molar fraction) increases to 45.48%-72.92%(molar fraction) in RGOs, along with a drastic decrease in hydroxyl and epoxy and minor changes in carbonyl and carboxyl. Thermal reduction or chemical reduction produces RGOs with residual functionalities, which may render different chemical activity and is desirable in various applications.展开更多
基金Project(2011FZ030)supported by the Natural Science Foundation of Yunnan Province,ChinaProjects(2011144,2011221)supported by Analysis and Test Foundation of Kunming University of Science and Technology,China
文摘Mesoporous CeO2 was first synthesized by hydrothermal method,and then used to synthesize different contents of CuO)x/CeO2(x:molar ratio of Cu to Ce) by deposition-precipitation method.These materials were characterized by X-ray diffraction(XRD),N2 adsorption and desorption,H2 temperature programmed reduction(H2-TPR) and O2 temperature programmed desorption(O2-TPD) to study the crystal structure,surface area,and the mechanism of CO oxidation.The results show that,on XRD patterns,no evidence of CuO diffraction peaks is present until Cu loading is increased to 20%.The BET surface area decreases noticeably with the increase of Cu content.Compared with other samples,the better reducibility and activity oxygen species of(CuO)10%/CeO2coincide with its better catalytic activity.
基金Project(51274248)supported by the National Natural Science Foundation of ChinaProjects(2015DFR50580,2013DFA31440)supported by the International Scientific and Technological Cooperation Program of China
文摘Reduced graphene oxide(RGO) sheets with varied contents and types of oxygenated groups were synthesized by Hummers treatment of natural graphite powders followed by different nontoxic and mild reduction methods, which include thermal and chemical reduction with ethylene glycol, KOH and Fe powder. The changes in microstructure and surface chemistry of RGOs were extensively characterized by SEM, TEM, AFM, XRD, XPS and Raman spectrum. The results show that significant exfoliation occurs during oxidation and is retained in reduction processes, along with the formation of curled wavy morphology. Compared with large d spacing(0.852 nm) of graphene oxide(GO), the(002) plane distance decreases to 0.358-0.384 nm of RGOs, indicating efficient tuning of surface functionalities through mild reduction methods. The ID/IG ratio of RGOs is about 1.0-1.15, indicating that reconstructed sp^2 domains have smaller sizes and larger quantity. The content of sp^2 bonded C in GO(36.93%, molar fraction) increases to 45.48%-72.92%(molar fraction) in RGOs, along with a drastic decrease in hydroxyl and epoxy and minor changes in carbonyl and carboxyl. Thermal reduction or chemical reduction produces RGOs with residual functionalities, which may render different chemical activity and is desirable in various applications.