In order to explore the mechanism of improving the surface wettability of low-energy polytetrafluoroethylene(PTFE)by new extended surfactants,five kinds of extended anionic surfactants with different numbers of oxypro...In order to explore the mechanism of improving the surface wettability of low-energy polytetrafluoroethylene(PTFE)by new extended surfactants,five kinds of extended anionic surfactants with different numbers of oxypropylene(PO)and oxyethylene(EO),octadecyl-(PO)_(m)-(EO)_(n)-sodium carboxylate(C_(18)PO_(m)EO_(n)C,m=5,10,15,n=5,10,15),were studied.The surface tension and contact angle of C_(18)PO_(m)EO_(n)C solution with different concentrations were measured,and the adhesion tension,PTFE-water interfacial tension,and adhesion work were calculated.It was found that the extended surfactant molecules adsorb on the surface of the solution and the PTFE-liquid interface simultaneously when the concentration is lower than the critical micelle concentration(cmc),and there was a linear relationship between surface tension and adhesion tension.The adsorption amount of C_(18)PO_(m)EO_(n)C at the PTFE-water interface was significantly lower than that on the surface of the solution.As the concentration increases above cmc,semi-micelle aggregates on the surface of PTFE are formed by C_(18)PO_(m)EO_(n)C molecules through hydrophobic interaction,and the hydrophilic group faces the solution to modify the surface of PTFE with high efficiency.展开更多
The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample pre...The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample preparation workflow for mass spectrometry-based proteomics.Using HeLa cells as an example,we found that the method employing the mass spectrometry-compatible surfactant BT reagent significantly reduces the total time consumed for protein extraction and minimizes protein losses during the sample preparation process.Further integrating the four protein extraction methods,we identified over 7000 proteins from HeLa cells without relying on pre-fractionation techniques,and 2990 of them were quantified using label-free quantification.It is worth noting that the BT and SDS methods demonstrate higher efficiency in extracting membrane proteins,while the Urea and Trizol methods are more effective in extracting proteins from nuclear and cytoplasmic fractions.In summary,this study provides a novel solution for deep proteome coverage,particularly in the context of cellular protein extraction,by integrating mass spectrometry-compatible surfactants with traditional extraction methods to effectively enhance protein identification numbers.展开更多
The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-200...The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-2000),was used to evaluate its effect on the collecting performance of sodium oleate during scheelite flotation at low temperatures.The effect of PEG-2000 on the flotation of scheelite with the collector sodium oleate(NaOL)was studied by flotation tests,surface tension tests,infrared spectral analysis,and zeta potential measurements.Flotation tests showed that adding PEG-2000 can enhance the collecting ability of NaOL on scheelite at low temperature(5℃).The recovery of scheelite with the mixed collector of PEG-200 and NaOL is 4.39%higher than that with NaOL only.The surface tension tests,infrared spectral analysis and zeta potential measurements revealed that PEG-2000 and OL^(−)are co-adsorbed on the scheelite surface at low temperatures.The presence of PEG-2000 promoted the increase of the adsorption concentration of oleate ions(OL^(−))on the scheelite surface.The reason was that PEG-2000 has a shielding effect on the electrostatic repulsion between the OL^(−)groups,which changes the micellar configuration of OL^(−)in the solution system and makes the OL^(−)gather more tightly on the surface of scheelite,leading to the enhancement of its hydrophobicity.This discovery provides a reference for the development of collecting reagents for efficient flotation recovery of scheelite under low temperature environment.展开更多
Based on the analysis of the properties of oily sludge samples,the effect of modification parameters,such as liquid to solid (L/S) ratio,agitation temperature,agitation intensity,agitation time and pH on the modificat...Based on the analysis of the properties of oily sludge samples,the effect of modification parameters,such as liquid to solid (L/S) ratio,agitation temperature,agitation intensity,agitation time and pH on the modification of oily sludge was investigated with the content of oil remnants in dry sludge as a reference index. Remixing experiments were carried out according to a simplex-lattice design,where Sx4056 was used as the demulsifier,petroleum sulfonate as the surfactant and sodium silicate (Na2SiO3) as the dispersant. The surface modification reagent formulation was optimized by a regression equation on the modified effect and based on the amounts of surface modification reagents. The results show that the content of the oil remaining in dry oily sludge is 0.28% of 10.15% oily sludge,when the reagent concentration rises to 3.5 g/L under the optimum experimental conditions.展开更多
The electrodeposition of nickel-silicon carbide coatings on a copper electrode was done by mixing SiC particles in the nickel electrodeposition solution.The influence of surfactants and silicon carbide particle size o...The electrodeposition of nickel-silicon carbide coatings on a copper electrode was done by mixing SiC particles in the nickel electrodeposition solution.The influence of surfactants and silicon carbide particle size on uniformity and quantity of silicon carbide particles in nickel-silicon carbide composite coatings was investigated.It was found that particle size affects the nucleation overpotential,with 40 nm silicon carbide nanoparticles more effective in promoting nickel nucleation than 500 nm particles due to an increase in active nucleation sites.In terms of surfactants,anionic surfactant sodium dodecyl sulfate(SDS)produced better dispersion of 40 nm silicon carbide particles than cationic surfactant cetyltrimethyl ammonium bromide(CTAB),but little difference was found between the two when 500 nm silicon carbide particles were used.Thus,although the suspension of silicon carbide particles can be improved and their co-deposition can be promoted with a cationic surfactant CTAB,it is less effective than an anionic surfactant SDS in terms of surface finish.展开更多
The wettability,surfactivity and the correlation between wettability and surfactivity of sodium diethylhexylphosphate,sodium diethylhexyl polyoxyethylene phosphate and their complex in NaOH solutions were studied.A co...The wettability,surfactivity and the correlation between wettability and surfactivity of sodium diethylhexylphosphate,sodium diethylhexyl polyoxyethylene phosphate and their complex in NaOH solutions were studied.A complex alkali resistant phosphate surfactant with good permeability was prepared.The wettability of surfactants was investigated by measuring the immersion time,sinking time and capillary effects of nature cotton grey fabric in NaOH solutions.The surfactivity of the surfactants was characterized by measuring the surface tension.The effect of the complex on the surface appearance of cotton grey fabric was also investigated with a scanning electron microscope(SEM) .The results show that all the surfactants exhibit good wettability for cotton grey fabric in 0.5-5.0 mol/L of NaOH solutions,the complex system exhibits better wettability in 5.0-7.0 mol/L of NaOH solutions,in comparison with either corresponding single surfactant component employed,and wettability is well correlative with the surfactivities of the surfactant.SEM images indicate that the cotton grey fabric is well wetted by the alkaline surfactant solution and the quality of fabric is improved.展开更多
Superalloys are grouped as hard-to-cut materials with relatively poor machinability.Tool wear is considered one of the main machinability attributes in machining superalloys.Although numerous works have been reported ...Superalloys are grouped as hard-to-cut materials with relatively poor machinability.Tool wear is considered one of the main machinability attributes in machining superalloys.Although numerous works have been reported on factors governing tool life in machining superalloys,no study was found on the effect of nanoparticles stability on nanofluid performance and consequently resulted tool wear morphologies.In the present work,the nanoparticles were reinforced by means of improving the stability of the base fluid.To that accomplished,the surface active agent (surfactant) was added to the base cutting fluid as a reinforcing element.The effects of new lubricant on the tool wear morphology of A286 works parts were assessed.展开更多
In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with p...In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with polyacrylic acid(PAA),TiO2 with polyethylene glycol(PEG 1000),and TiN,SiC,hydroxyapatite(noodle-like) with PEG 10000 to ammonia-water solution,respectively.The thermal conductivities were measured by using a KD2 Pro thermal properties analyzer.The influences of surfactant and ammonia on the dispersion stabilities of the binary nanofluids were investigated by the light absorbency ratio index methods.The results show that the type,content and size of nanoparticles,the temperature as well as the dispersion stability are the key parameters that affect the thermal conductivity of nanofluids.For the given nanoparticle material and the base fluid,the thermal conductivity ratio of the nanofluid to the ammonia-water liquid increases as the nanoparticle content and the temperature are increased,and the diameter of nanoparticle is decreased.Furthermore,the thermal conductivity ratio increases significantly by improving the stabilities of nanofluids,which is achieved by adding surfactants or performing the proper ammonia content in the fluid.展开更多
To solve the problem of slow leaching speed of copper,surfactant was added into lixivium as leaching agent in the experiment.Based on physical chemistry and seepage flow mechanics,the leaching mechanics of surfactant ...To solve the problem of slow leaching speed of copper,surfactant was added into lixivium as leaching agent in the experiment.Based on physical chemistry and seepage flow mechanics,the leaching mechanics of surfactant was analyzed.The solution surface tension and surfactant adsorbing on the surface of ore have a significant impact on the surface wetting effect.With leaching rate for response,the study screened out three main factors by Plackett-Burman design method:the sulfuric acid concentration,surfactant concentration and temperature.Among these three factors,the surfactant concentration is the most important contributor to leaching rate.After obtaining the experiment center by the steepest ascent experiment,a continuous variable surface model was built by response surface methodology.By solving quadratic polynomial equation,optimal conditions for leaching were finally obtained as follows:the sulfuric acid concentration was 60 g/L,the surfactant concentration was 0.00914 mol/L,and the temperature was 45 °C.The leaching rate was 66.81% in the optimized leaching conditions,which was close to the predicted value,showing that regression result was good.展开更多
High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon ...High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.展开更多
The adsorption of sulfate in aqueous solutions onto organo-nano-clay prepared by natural zeolite and cationic surfactant cetyltrimethylammonium bromide (CTAB) was studied.Parameters such as adsorbent dosage,contact ...The adsorption of sulfate in aqueous solutions onto organo-nano-clay prepared by natural zeolite and cationic surfactant cetyltrimethylammonium bromide (CTAB) was studied.Parameters such as adsorbent dosage,contact time and temperature were investigated using batch adsorption studies.The results show that the uptake of sulfate increases with the increase of contact time and temperature,and decreases with the increase of dosage.The Freundlich isotherm model is fit to explain the sulfate adsorption onto organo-nano-clay.The maximum adsorption capacity is found to be 38.02 mg/g at 40 ℃.The kinetic data fit well the pseudo-second-order and Elovich models with a R2 more than 0.98.It is suggested that chemisorption is the rate-controlling step for adsorption of sulfate onto organo-nano-clay,meanwhile both intraparticle diffusion and boundary layer diffusion also contribute as well.Ion-exchange between sulfate anions and bromide ions and complexation between sulfate anions and CTAB cations are responsible for the mechanism of sulfate adsorption.Keywords:organo-nano-clay; cetyltrimethylammonium bromide (CTAB); modification; sulfate; adsorption展开更多
A novel cloud-point extraction (CPE) was successfully used in preconcentration of biphenol A (BPA) from aqueous solutions. Majority of BPA is extracted into the surfactant-rich phase. The parameters affecting the ...A novel cloud-point extraction (CPE) was successfully used in preconcentration of biphenol A (BPA) from aqueous solutions. Majority of BPA is extracted into the surfactant-rich phase. The parameters affecting the CPE such as concentration of surfactant and electrolyte, equilibration temperature and time and pH of sample solution were investigated. The samples were analyzed by high-performance liquid chromatography with ultraviolet detection. Under the optimized conditions, preconcentration of 10 mL sample gives a preconcentration factor of 11. The limit of detection (LOD) and limit of quantification (LOQ) are 0.1 μg/L and 0.33 μg/L, respectively. The linear range of the proposed method is 0.2-20 μg/L with correlation coefficients greater than 0.998 7 and the spiking recove6es are 97.96%-100.42%. The interference factor was tested and the extraction mechanism was also investigated. Thus, the developed CPE has proven to be an efficient, green, rapid and inexpensive approach for extraction and preconcentration of BPA from water samples.展开更多
The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and inte...The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and interaction forces of cationic surfactants at solid-solution interfaces were measured in tapping mode and Pico Force mode, respectively. The images demonstrated that the adsorbed structure was varied by a variety of surfactant concentrations. The adsorbed layer on mica was monolayer at first, and then became bilayer. A striped adsorbed structure was observed in a higher concentration of CTAC,which could not be found in any other concentrations of DTAC. For force measurements, the repulsive force was exponentially decreasing with the concentration increasing till a net attractive force appeared. A largest attractive force could be observed at a certain concentration, which was close to the point of charge neutralization. The results also showed a significant impact of hydrocarbon chain length on adsorption. An adsorption simulation was established to give a clear understanding of the interaction between cationic surfactants and mica.展开更多
To shorten the bioleaching cycle of arsenic-containing gold concentrate, surfactants were used to promote the interaction between bacteria and ore to increase the arsenic leaching rate. Three different kinds of surfac...To shorten the bioleaching cycle of arsenic-containing gold concentrate, surfactants were used to promote the interaction between bacteria and ore to increase the arsenic leaching rate. Three different kinds of surfactants were used to evaluate the effects of surfactants on the growth of bacteria and arsenic leaching rate of arsenic-containing gold concentrate. The mechanism underlying surfactant enhancement was also studied. Results show that when relatively low-concentration surfactants are added to the medium, no significant difference is observed in the growth and Fe2+ oxidation ability of the bacteria compared with no surfactant in the medium. However, only the anionic surfactant calcium lignosulfonate and the nonionic surfactant Tween 80 are found to improve the arsenic leaching rates. Their optimum mass concentrations are 30 and 80 mg/L, respectively. At such optimum mass concentrations, the arsenic leaching rates are approximately 13.7% and 9.1% higher than those without the addition of surfactant, respectively. Mechanism research reveals that adding the anionic surfactant calcium lignosulfonate improves the percentage of bacterial adhesion on the mineral surface and decreases the surface tension in the leaching solution.展开更多
In this study,the effects of surfactants on the hydrodynamic characteristics of bubbles in shear-thinning fluids at low Reynolds number(Re<50)are investigated.The bubble terminal velocity and drag coefficient of bu...In this study,the effects of surfactants on the hydrodynamic characteristics of bubbles in shear-thinning fluids at low Reynolds number(Re<50)are investigated.The bubble terminal velocity and drag coefficient of bubble in clean and contaminated carboxymethylcellulose(CMC)solutions are obtained using a high-speed camera for examining differences.The results show that the existence of surfactant could reduce the terminal velocity of bubble at small volume(0.25wt%CMC:<100 mm3;0.50wt%CMC:<110 mm3),attributed to stiffening the bubble interface.However,this negative effect decreases and finally disappears with increasing bubble volume.The drag coefficient curves of the bubble in contaminated CMC solution exhibit behavior similar to that exhibited by a solid sphere at Re<10,indicating that internal circulation flow is absent at the bubble interface as compared to that in clean CMC solution.However,for 10<Re<40,a transition of drag curve from 24/Re to 16/Re in contaminated CMC solution is observed,which is easy at low SDS concentrations and high CMC concentrations.展开更多
Zn2GeO4 nanorods were prepared by a surfactant-assisted solution phase route.The as-prepared products were characterized by X-ray powder diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission ...Zn2GeO4 nanorods were prepared by a surfactant-assisted solution phase route.The as-prepared products were characterized by X-ray powder diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),inductively coupled plasma atomic emission spectrometer(ICP-AES),UV-vis diffuse reflection spectroscopy and photoluminescence(PL) spectroscopy.The possible formation mechanism of Zn2GeO4 nanorods was discussed.It was supposed that the CTA+ cations preferentially adsorb on the planes of Zn2GeO4 nanorods,leading to preferential growth along the c-axis to form the Zn2GeO4 rods with larger aspect ratio and higher surface area,which showed the improved photocatalytic activity for photoreduction of CO2.The photoluminescence(PL) property of Zn2GeO4 nanorods was investigated through the emission spectra.展开更多
The aim of this work was to investigate the effect of different surfactants on the removal efficiency of heavy metals in sewage sludge treated by a method combining bio-acidification with Fenton oxidation. Four surfac...The aim of this work was to investigate the effect of different surfactants on the removal efficiency of heavy metals in sewage sludge treated by a method combining bio-acidification with Fenton oxidation. Four surfactants were adopted such as anionic surfactant(sodium dodecyl benzene sulfonate, SDBS), nonionic surfactants(tween-20 and tween-60) and cationic surfactant(hexadecyl trimethyl ammonium chloride, HTAC), respectively. The indigenous sulfur-oxidizing bacteria in bio-acidification phase were enriched and cultured from fresh activated sludge obtained from a wastewater treatment plant. It is shown that different surfactants exhibited distinct effect on the removal efficiency of heavy metals from sewage sludge. The nonionic surfactants,especially tween-60, promotes the solubilization of heavy metals, while the anionic and cationic surfactants hinder the removal of heavy metals. Copper is efficiently leached. The removal efficiency of cadium is relatively lower than that of Cu due to the demand for rigorous p H value. Lead is leached with a low efficiency as the formation of low soluble Pb SO4 precipitates.展开更多
文摘In order to explore the mechanism of improving the surface wettability of low-energy polytetrafluoroethylene(PTFE)by new extended surfactants,five kinds of extended anionic surfactants with different numbers of oxypropylene(PO)and oxyethylene(EO),octadecyl-(PO)_(m)-(EO)_(n)-sodium carboxylate(C_(18)PO_(m)EO_(n)C,m=5,10,15,n=5,10,15),were studied.The surface tension and contact angle of C_(18)PO_(m)EO_(n)C solution with different concentrations were measured,and the adhesion tension,PTFE-water interfacial tension,and adhesion work were calculated.It was found that the extended surfactant molecules adsorb on the surface of the solution and the PTFE-liquid interface simultaneously when the concentration is lower than the critical micelle concentration(cmc),and there was a linear relationship between surface tension and adhesion tension.The adsorption amount of C_(18)PO_(m)EO_(n)C at the PTFE-water interface was significantly lower than that on the surface of the solution.As the concentration increases above cmc,semi-micelle aggregates on the surface of PTFE are formed by C_(18)PO_(m)EO_(n)C molecules through hydrophobic interaction,and the hydrophilic group faces the solution to modify the surface of PTFE with high efficiency.
文摘The current study comprehensively evaluates four different protein extraction methods based on urea,sodium dodecyl sulfate(SDS),anionic surfactants(BT),and total RNA extractor(Trizol),aiming to optimize the sample preparation workflow for mass spectrometry-based proteomics.Using HeLa cells as an example,we found that the method employing the mass spectrometry-compatible surfactant BT reagent significantly reduces the total time consumed for protein extraction and minimizes protein losses during the sample preparation process.Further integrating the four protein extraction methods,we identified over 7000 proteins from HeLa cells without relying on pre-fractionation techniques,and 2990 of them were quantified using label-free quantification.It is worth noting that the BT and SDS methods demonstrate higher efficiency in extracting membrane proteins,while the Urea and Trizol methods are more effective in extracting proteins from nuclear and cytoplasmic fractions.In summary,this study provides a novel solution for deep proteome coverage,particularly in the context of cellular protein extraction,by integrating mass spectrometry-compatible surfactants with traditional extraction methods to effectively enhance protein identification numbers.
基金Project(2023JJ10070)supported by the Hunan Provincial Outstanding Youth Fund,ChinaProjects(51974364,52074355,52304316)supported by the National Natural Science Foundation of China。
文摘The reduced ability of fatty acids to dissolve and disperse at low temperatures limits their effectiveness in winter applications.In this study,a green and environment-friendly reagent,polyethylene glycol 2000(PEG-2000),was used to evaluate its effect on the collecting performance of sodium oleate during scheelite flotation at low temperatures.The effect of PEG-2000 on the flotation of scheelite with the collector sodium oleate(NaOL)was studied by flotation tests,surface tension tests,infrared spectral analysis,and zeta potential measurements.Flotation tests showed that adding PEG-2000 can enhance the collecting ability of NaOL on scheelite at low temperature(5℃).The recovery of scheelite with the mixed collector of PEG-200 and NaOL is 4.39%higher than that with NaOL only.The surface tension tests,infrared spectral analysis and zeta potential measurements revealed that PEG-2000 and OL^(−)are co-adsorbed on the scheelite surface at low temperatures.The presence of PEG-2000 promoted the increase of the adsorption concentration of oleate ions(OL^(−))on the scheelite surface.The reason was that PEG-2000 has a shielding effect on the electrostatic repulsion between the OL^(−)groups,which changes the micellar configuration of OL^(−)in the solution system and makes the OL^(−)gather more tightly on the surface of scheelite,leading to the enhancement of its hydrophobicity.This discovery provides a reference for the development of collecting reagents for efficient flotation recovery of scheelite under low temperature environment.
基金Project(50974119) supported by the National Natural Science Foundation of ChinaProject(2006A019) supported by the Science and Technology Fund of China University of Mining and Technology
文摘Based on the analysis of the properties of oily sludge samples,the effect of modification parameters,such as liquid to solid (L/S) ratio,agitation temperature,agitation intensity,agitation time and pH on the modification of oily sludge was investigated with the content of oil remnants in dry sludge as a reference index. Remixing experiments were carried out according to a simplex-lattice design,where Sx4056 was used as the demulsifier,petroleum sulfonate as the surfactant and sodium silicate (Na2SiO3) as the dispersant. The surface modification reagent formulation was optimized by a regression equation on the modified effect and based on the amounts of surface modification reagents. The results show that the content of the oil remaining in dry oily sludge is 0.28% of 10.15% oily sludge,when the reagent concentration rises to 3.5 g/L under the optimum experimental conditions.
基金Project(20180550242)supported by the Liaoning Science and Technology Plan,China。
文摘The electrodeposition of nickel-silicon carbide coatings on a copper electrode was done by mixing SiC particles in the nickel electrodeposition solution.The influence of surfactants and silicon carbide particle size on uniformity and quantity of silicon carbide particles in nickel-silicon carbide composite coatings was investigated.It was found that particle size affects the nucleation overpotential,with 40 nm silicon carbide nanoparticles more effective in promoting nickel nucleation than 500 nm particles due to an increase in active nucleation sites.In terms of surfactants,anionic surfactant sodium dodecyl sulfate(SDS)produced better dispersion of 40 nm silicon carbide particles than cationic surfactant cetyltrimethyl ammonium bromide(CTAB),but little difference was found between the two when 500 nm silicon carbide particles were used.Thus,although the suspension of silicon carbide particles can be improved and their co-deposition can be promoted with a cationic surfactant CTAB,it is less effective than an anionic surfactant SDS in terms of surface finish.
基金Project(20573079) supported by the National Natural Science Foundation of China
文摘The wettability,surfactivity and the correlation between wettability and surfactivity of sodium diethylhexylphosphate,sodium diethylhexyl polyoxyethylene phosphate and their complex in NaOH solutions were studied.A complex alkali resistant phosphate surfactant with good permeability was prepared.The wettability of surfactants was investigated by measuring the immersion time,sinking time and capillary effects of nature cotton grey fabric in NaOH solutions.The surfactivity of the surfactants was characterized by measuring the surface tension.The effect of the complex on the surface appearance of cotton grey fabric was also investigated with a scanning electron microscope(SEM) .The results show that all the surfactants exhibit good wettability for cotton grey fabric in 0.5-5.0 mol/L of NaOH solutions,the complex system exhibits better wettability in 5.0-7.0 mol/L of NaOH solutions,in comparison with either corresponding single surfactant component employed,and wettability is well correlative with the surfactivities of the surfactant.SEM images indicate that the cotton grey fabric is well wetted by the alkaline surfactant solution and the quality of fabric is improved.
文摘Superalloys are grouped as hard-to-cut materials with relatively poor machinability.Tool wear is considered one of the main machinability attributes in machining superalloys.Although numerous works have been reported on factors governing tool life in machining superalloys,no study was found on the effect of nanoparticles stability on nanofluid performance and consequently resulted tool wear morphologies.In the present work,the nanoparticles were reinforced by means of improving the stability of the base fluid.To that accomplished,the surface active agent (surfactant) was added to the base cutting fluid as a reinforcing element.The effects of new lubricant on the tool wear morphology of A286 works parts were assessed.
基金Projects(51176029,50876020) supported by the National Natural Science Foundation of ChinaProject(2011BAJ03B00) supported by the 12th Five-Year National Science and Technology Support Key Program of China Project(ybjj1124) supported by the Foundation of Graduate School of Southeast University,China
文摘In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with polyacrylic acid(PAA),TiO2 with polyethylene glycol(PEG 1000),and TiN,SiC,hydroxyapatite(noodle-like) with PEG 10000 to ammonia-water solution,respectively.The thermal conductivities were measured by using a KD2 Pro thermal properties analyzer.The influences of surfactant and ammonia on the dispersion stabilities of the binary nanofluids were investigated by the light absorbency ratio index methods.The results show that the type,content and size of nanoparticles,the temperature as well as the dispersion stability are the key parameters that affect the thermal conductivity of nanofluids.For the given nanoparticle material and the base fluid,the thermal conductivity ratio of the nanofluid to the ammonia-water liquid increases as the nanoparticle content and the temperature are increased,and the diameter of nanoparticle is decreased.Furthermore,the thermal conductivity ratio increases significantly by improving the stabilities of nanofluids,which is achieved by adding surfactants or performing the proper ammonia content in the fluid.
基金Projects (51374035,51304011) supported by the National Natural Science Foundation of ChinaProject (2012BAB08B02) supported by the National Key Technology R&D Program for the 12th Five-year Plan of China
文摘To solve the problem of slow leaching speed of copper,surfactant was added into lixivium as leaching agent in the experiment.Based on physical chemistry and seepage flow mechanics,the leaching mechanics of surfactant was analyzed.The solution surface tension and surfactant adsorbing on the surface of ore have a significant impact on the surface wetting effect.With leaching rate for response,the study screened out three main factors by Plackett-Burman design method:the sulfuric acid concentration,surfactant concentration and temperature.Among these three factors,the surfactant concentration is the most important contributor to leaching rate.After obtaining the experiment center by the steepest ascent experiment,a continuous variable surface model was built by response surface methodology.By solving quadratic polynomial equation,optimal conditions for leaching were finally obtained as follows:the sulfuric acid concentration was 60 g/L,the surfactant concentration was 0.00914 mol/L,and the temperature was 45 °C.The leaching rate was 66.81% in the optimized leaching conditions,which was close to the predicted value,showing that regression result was good.
基金Project(NRF-2014R1A1A4A03005148)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.
基金Project(51178159)supported by the National Natural Science Foundation of ChinaProject(CXZZ12_0236)supported by the Postgraduate Technological Innovation Program of Jiangsu Province Education Department,China
文摘The adsorption of sulfate in aqueous solutions onto organo-nano-clay prepared by natural zeolite and cationic surfactant cetyltrimethylammonium bromide (CTAB) was studied.Parameters such as adsorbent dosage,contact time and temperature were investigated using batch adsorption studies.The results show that the uptake of sulfate increases with the increase of contact time and temperature,and decreases with the increase of dosage.The Freundlich isotherm model is fit to explain the sulfate adsorption onto organo-nano-clay.The maximum adsorption capacity is found to be 38.02 mg/g at 40 ℃.The kinetic data fit well the pseudo-second-order and Elovich models with a R2 more than 0.98.It is suggested that chemisorption is the rate-controlling step for adsorption of sulfate onto organo-nano-clay,meanwhile both intraparticle diffusion and boundary layer diffusion also contribute as well.Ion-exchange between sulfate anions and bromide ions and complexation between sulfate anions and CTAB cations are responsible for the mechanism of sulfate adsorption.Keywords:organo-nano-clay; cetyltrimethylammonium bromide (CTAB); modification; sulfate; adsorption
基金Project(20956001) supported by the National Natural Science Foundation of ChinaProject(CX2011B083) supported by Hunan Provincial Innovation Foundation for Postgraduate, ChinaProject(K1104026-11) supported by Project of Changsha Science and Technology Bureau, China
文摘A novel cloud-point extraction (CPE) was successfully used in preconcentration of biphenol A (BPA) from aqueous solutions. Majority of BPA is extracted into the surfactant-rich phase. The parameters affecting the CPE such as concentration of surfactant and electrolyte, equilibration temperature and time and pH of sample solution were investigated. The samples were analyzed by high-performance liquid chromatography with ultraviolet detection. Under the optimized conditions, preconcentration of 10 mL sample gives a preconcentration factor of 11. The limit of detection (LOD) and limit of quantification (LOQ) are 0.1 μg/L and 0.33 μg/L, respectively. The linear range of the proposed method is 0.2-20 μg/L with correlation coefficients greater than 0.998 7 and the spiking recove6es are 97.96%-100.42%. The interference factor was tested and the extraction mechanism was also investigated. Thus, the developed CPE has proven to be an efficient, green, rapid and inexpensive approach for extraction and preconcentration of BPA from water samples.
基金Project(50974134)supported by the National Natural Science Foundation of China
文摘The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and interaction forces of cationic surfactants at solid-solution interfaces were measured in tapping mode and Pico Force mode, respectively. The images demonstrated that the adsorbed structure was varied by a variety of surfactant concentrations. The adsorbed layer on mica was monolayer at first, and then became bilayer. A striped adsorbed structure was observed in a higher concentration of CTAC,which could not be found in any other concentrations of DTAC. For force measurements, the repulsive force was exponentially decreasing with the concentration increasing till a net attractive force appeared. A largest attractive force could be observed at a certain concentration, which was close to the point of charge neutralization. The results also showed a significant impact of hydrocarbon chain length on adsorption. An adsorption simulation was established to give a clear understanding of the interaction between cationic surfactants and mica.
基金Projects(51104024,51374043)supported by National Natural Science Foundation of ChinaProject(10JJ6019)supported by Hunan Provincial Natural Science Foundation,China+1 种基金Project(10C0399)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2014SK3182)supported by Hunan Provincial Science&Technology Department,China
文摘To shorten the bioleaching cycle of arsenic-containing gold concentrate, surfactants were used to promote the interaction between bacteria and ore to increase the arsenic leaching rate. Three different kinds of surfactants were used to evaluate the effects of surfactants on the growth of bacteria and arsenic leaching rate of arsenic-containing gold concentrate. The mechanism underlying surfactant enhancement was also studied. Results show that when relatively low-concentration surfactants are added to the medium, no significant difference is observed in the growth and Fe2+ oxidation ability of the bacteria compared with no surfactant in the medium. However, only the anionic surfactant calcium lignosulfonate and the nonionic surfactant Tween 80 are found to improve the arsenic leaching rates. Their optimum mass concentrations are 30 and 80 mg/L, respectively. At such optimum mass concentrations, the arsenic leaching rates are approximately 13.7% and 9.1% higher than those without the addition of surfactant, respectively. Mechanism research reveals that adding the anionic surfactant calcium lignosulfonate improves the percentage of bacterial adhesion on the mineral surface and decreases the surface tension in the leaching solution.
基金Project(21406141)supported by the National Natural Science Foundation of ChinaProject(20141078)supported by the National Basic Research Program,ChinaProject(L201733)supported by the Research Foundation of Education Bureau of Liaoning Province,China
文摘In this study,the effects of surfactants on the hydrodynamic characteristics of bubbles in shear-thinning fluids at low Reynolds number(Re<50)are investigated.The bubble terminal velocity and drag coefficient of bubble in clean and contaminated carboxymethylcellulose(CMC)solutions are obtained using a high-speed camera for examining differences.The results show that the existence of surfactant could reduce the terminal velocity of bubble at small volume(0.25wt%CMC:<100 mm3;0.50wt%CMC:<110 mm3),attributed to stiffening the bubble interface.However,this negative effect decreases and finally disappears with increasing bubble volume.The drag coefficient curves of the bubble in contaminated CMC solution exhibit behavior similar to that exhibited by a solid sphere at Re<10,indicating that internal circulation flow is absent at the bubble interface as compared to that in clean CMC solution.However,for 10<Re<40,a transition of drag curve from 24/Re to 16/Re in contaminated CMC solution is observed,which is easy at low SDS concentrations and high CMC concentrations.
基金Project(51208102)supported by the National Natural Science Foundation of China
文摘Zn2GeO4 nanorods were prepared by a surfactant-assisted solution phase route.The as-prepared products were characterized by X-ray powder diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HRTEM),inductively coupled plasma atomic emission spectrometer(ICP-AES),UV-vis diffuse reflection spectroscopy and photoluminescence(PL) spectroscopy.The possible formation mechanism of Zn2GeO4 nanorods was discussed.It was supposed that the CTA+ cations preferentially adsorb on the planes of Zn2GeO4 nanorods,leading to preferential growth along the c-axis to form the Zn2GeO4 rods with larger aspect ratio and higher surface area,which showed the improved photocatalytic activity for photoreduction of CO2.The photoluminescence(PL) property of Zn2GeO4 nanorods was investigated through the emission spectra.
基金Project(21276069)supported by the National Natural Science Foundation of ChinaProject(CX2012B139)supported by the Hunan Province Innovation Foundation for Postgraduate,China
文摘The aim of this work was to investigate the effect of different surfactants on the removal efficiency of heavy metals in sewage sludge treated by a method combining bio-acidification with Fenton oxidation. Four surfactants were adopted such as anionic surfactant(sodium dodecyl benzene sulfonate, SDBS), nonionic surfactants(tween-20 and tween-60) and cationic surfactant(hexadecyl trimethyl ammonium chloride, HTAC), respectively. The indigenous sulfur-oxidizing bacteria in bio-acidification phase were enriched and cultured from fresh activated sludge obtained from a wastewater treatment plant. It is shown that different surfactants exhibited distinct effect on the removal efficiency of heavy metals from sewage sludge. The nonionic surfactants,especially tween-60, promotes the solubilization of heavy metals, while the anionic and cationic surfactants hinder the removal of heavy metals. Copper is efficiently leached. The removal efficiency of cadium is relatively lower than that of Cu due to the demand for rigorous p H value. Lead is leached with a low efficiency as the formation of low soluble Pb SO4 precipitates.