Malachite,being highly hydrophilic and difficult to be floated conventionally,is usually beneficiated by sulfidation flotation in industry.However,the complex crystal structure of malachite leads to the formation of v...Malachite,being highly hydrophilic and difficult to be floated conventionally,is usually beneficiated by sulfidation flotation in industry.However,the complex crystal structure of malachite leads to the formation of various fracture surfaces with distinct properties during crushing and grinding,resulting in surface anisotropy.In this study,we explored the surface anisotropy of malachite and further investigated its sulfidation mechanism from the coordination chemistry perspective,considering the influence of the Jahn-Teller effect on malachite sulfidation.Computational results reveal that the penta-coordinated Cu ions on the malachite(201)and(010)surfaces exhibit stronger activity compared to those on the malachite(201)surface.Additionally,the tetra-coordinated structure formed by HS^(−)adsorption on the malachite(010)and(201)surfaces is more stable,with more negative adsorption energy,compared to the hexa coordinated structure formed by HS−adsorption on the(201)surface.The sulfidized malachite surface has an additional pair ofπelectron and smaller HOMO(highest occupied molecular orbital)-LUMO(lowest unoccupied molecular orbital)gap with xanthate molecules,causing strongerπbackbonding with xanthate.This study provides new insights into the surface sulfidation mechanism of malachite and offers a theoretical reference for the design of targeted flotation reagents.展开更多
基金Projects(52074356,U22A20170)supported by the National Natural Science Foundation of ChinaProject(2022YFC2904503)supported by the National Key R&D Program of China+4 种基金Project(2023SK2061)supported by the Special Fund for the Construction of Hunan Innovative Province,ChinaProject(2023CXQD002)supported by the Innovation-driven Project of Central South University,ChinaProject(2022RC1183)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(kq2009005)supported by the Changsha Science and Technology Project(Changsha Outstanding Innovative Youth Training Program),ChinaProject supported by the High-performance Computing Centers of Central South University,China。
文摘Malachite,being highly hydrophilic and difficult to be floated conventionally,is usually beneficiated by sulfidation flotation in industry.However,the complex crystal structure of malachite leads to the formation of various fracture surfaces with distinct properties during crushing and grinding,resulting in surface anisotropy.In this study,we explored the surface anisotropy of malachite and further investigated its sulfidation mechanism from the coordination chemistry perspective,considering the influence of the Jahn-Teller effect on malachite sulfidation.Computational results reveal that the penta-coordinated Cu ions on the malachite(201)and(010)surfaces exhibit stronger activity compared to those on the malachite(201)surface.Additionally,the tetra-coordinated structure formed by HS^(−)adsorption on the malachite(010)and(201)surfaces is more stable,with more negative adsorption energy,compared to the hexa coordinated structure formed by HS−adsorption on the(201)surface.The sulfidized malachite surface has an additional pair ofπelectron and smaller HOMO(highest occupied molecular orbital)-LUMO(lowest unoccupied molecular orbital)gap with xanthate molecules,causing strongerπbackbonding with xanthate.This study provides new insights into the surface sulfidation mechanism of malachite and offers a theoretical reference for the design of targeted flotation reagents.