文章通过两步反应合成共轭超交联聚合物(TPP-CHCP)。TPP-CHCP有较宽的光吸收区间(400~900 nm),可作为光致原子转移自由基聚合(photocatalyzed atom transfer radical polymerization,P-ATRP)的光催化剂。TPP-CHCP可在940 nm近红外光照射...文章通过两步反应合成共轭超交联聚合物(TPP-CHCP)。TPP-CHCP有较宽的光吸收区间(400~900 nm),可作为光致原子转移自由基聚合(photocatalyzed atom transfer radical polymerization,P-ATRP)的光催化剂。TPP-CHCP可在940 nm近红外光照射下,驱动丙烯酸甲酯(MA)和甲基丙烯酸甲酯(MMA)的P-ATRP反应且单体转化率达到99%。所得聚合物的结构明确,分子量可控,分子量分布(D-_(s)<1.18)窄。在太阳光照射条件下,TPP-CHCP依然具有优异的光催化活性,可高效制备嵌段共聚物。展开更多
为了研究植物乳杆菌材料对黄曲霉毒素去除新方法,为黄曲霉毒素B_(1)的高效生物去除提供了新思路。本文采用基于聚多巴胺的原子转移自由基聚合方法(Polydopamine-based Atom Transfer Radical Polymerization,p-ATRP)和细胞自催化的无铜...为了研究植物乳杆菌材料对黄曲霉毒素去除新方法,为黄曲霉毒素B_(1)的高效生物去除提供了新思路。本文采用基于聚多巴胺的原子转移自由基聚合方法(Polydopamine-based Atom Transfer Radical Polymerization,p-ATRP)和细胞自催化的无铜添加原子转移自由基聚合方法(Cell-catalyzed Copper-free Atom Transfer Radical Polymerization,c-ATRP)对植物乳杆菌活细胞表面进行修饰,引导原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)体系自组装聚合反应形成聚合物材料,对修饰后的植物乳杆菌进行表征,并比较修饰前后植物乳杆菌对黄曲霉毒素B_(1)吸附脱附能力。结果表明,未修饰的植物乳杆菌,细胞表面圆润光滑,经过p-ATRP修饰后的植物乳杆菌,细胞表面变得极为粗糙,经过c-ATRP修饰后的植物乳杆菌,细胞表面出现褶皱;未修饰的植物乳杆菌的Zeta点位为-8.43 mV,经过Dopamine和PNIPAAm修饰后的植物乳杆菌点位分别为1.791和13.767 mV;植物乳杆菌在0.1~100μg/mL黄曲霉毒素B_(1)吸附率为75.3%,p-ATRP和c-ATRP修饰的植物乳杆菌比未修饰的植物乳杆菌吸附能力分别提高了7.8%和6.4%。在相同黄曲霉毒素B_(1)浓度下,植物乳杆菌脱附率为6.1%,p-ATRP和c-ATRP修饰的植物乳杆菌脱附能力分别提高了14.4%和42%。经过修饰后的植物乳杆菌显著提升了植物乳杆菌对黄曲霉毒素的吸附和脱附能力。展开更多
由于纤维素具有热稳定性差、化学稳定性差、易吸水、易受菌虫和微生物侵害等缺点,有必要对其进行化学改性处理。本文简述了原子转移自由基聚合(atom transfer radical polymerization,ATRP)方法在纤维素表面改性方面的应用情况及最新研...由于纤维素具有热稳定性差、化学稳定性差、易吸水、易受菌虫和微生物侵害等缺点,有必要对其进行化学改性处理。本文简述了原子转移自由基聚合(atom transfer radical polymerization,ATRP)方法在纤维素表面改性方面的应用情况及最新研究进展。综述了利用ATRP方法对纤维素表面进行改性的方法,利用ATRP方法在纤维素表面接枝不同功能性单体,赋予纤维素表面疏水性、抗菌性和刺激-响应性等多种功能性的研究概况及利用ATRP方法对天然纤维表面进行表面疏水、抗菌等功能改性以及在改善复合材料中纤维与基体间界面相容性方面的应用。最后,还介绍了ARGET ATRP(activators regenerated by electron transfer ATRP)方法由于具有大量减少铜用量,允许少量空气存在而且改性后纤维素易清洗等优点,有利于在纤维素改性工业中的推广应用。展开更多
Hollow silica nanospheres were synthesized by silyl functionalized poly(vinyl benzyl chloride)(PVBC) latex nanoparticles via surface-initiated atom transfer radical polymerization(ATRP) of 3-(trimethoxysilyl)propyl me...Hollow silica nanospheres were synthesized by silyl functionalized poly(vinyl benzyl chloride)(PVBC) latex nanoparticles via surface-initiated atom transfer radical polymerization(ATRP) of 3-(trimethoxysilyl)propyl methacrylate(TMSPM),followed by polycondensation with tetraethoxysi-lane(TEOS) in the ethanol-ammonia and removal of the PVBC cores by thermal decomposition.Transmission electron microscopy(TEM) were used to characterize the intermediate products and the hollow nanospheres.展开更多
文摘文章通过两步反应合成共轭超交联聚合物(TPP-CHCP)。TPP-CHCP有较宽的光吸收区间(400~900 nm),可作为光致原子转移自由基聚合(photocatalyzed atom transfer radical polymerization,P-ATRP)的光催化剂。TPP-CHCP可在940 nm近红外光照射下,驱动丙烯酸甲酯(MA)和甲基丙烯酸甲酯(MMA)的P-ATRP反应且单体转化率达到99%。所得聚合物的结构明确,分子量可控,分子量分布(D-_(s)<1.18)窄。在太阳光照射条件下,TPP-CHCP依然具有优异的光催化活性,可高效制备嵌段共聚物。
文摘为了研究植物乳杆菌材料对黄曲霉毒素去除新方法,为黄曲霉毒素B_(1)的高效生物去除提供了新思路。本文采用基于聚多巴胺的原子转移自由基聚合方法(Polydopamine-based Atom Transfer Radical Polymerization,p-ATRP)和细胞自催化的无铜添加原子转移自由基聚合方法(Cell-catalyzed Copper-free Atom Transfer Radical Polymerization,c-ATRP)对植物乳杆菌活细胞表面进行修饰,引导原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)体系自组装聚合反应形成聚合物材料,对修饰后的植物乳杆菌进行表征,并比较修饰前后植物乳杆菌对黄曲霉毒素B_(1)吸附脱附能力。结果表明,未修饰的植物乳杆菌,细胞表面圆润光滑,经过p-ATRP修饰后的植物乳杆菌,细胞表面变得极为粗糙,经过c-ATRP修饰后的植物乳杆菌,细胞表面出现褶皱;未修饰的植物乳杆菌的Zeta点位为-8.43 mV,经过Dopamine和PNIPAAm修饰后的植物乳杆菌点位分别为1.791和13.767 mV;植物乳杆菌在0.1~100μg/mL黄曲霉毒素B_(1)吸附率为75.3%,p-ATRP和c-ATRP修饰的植物乳杆菌比未修饰的植物乳杆菌吸附能力分别提高了7.8%和6.4%。在相同黄曲霉毒素B_(1)浓度下,植物乳杆菌脱附率为6.1%,p-ATRP和c-ATRP修饰的植物乳杆菌脱附能力分别提高了14.4%和42%。经过修饰后的植物乳杆菌显著提升了植物乳杆菌对黄曲霉毒素的吸附和脱附能力。
文摘由于纤维素具有热稳定性差、化学稳定性差、易吸水、易受菌虫和微生物侵害等缺点,有必要对其进行化学改性处理。本文简述了原子转移自由基聚合(atom transfer radical polymerization,ATRP)方法在纤维素表面改性方面的应用情况及最新研究进展。综述了利用ATRP方法对纤维素表面进行改性的方法,利用ATRP方法在纤维素表面接枝不同功能性单体,赋予纤维素表面疏水性、抗菌性和刺激-响应性等多种功能性的研究概况及利用ATRP方法对天然纤维表面进行表面疏水、抗菌等功能改性以及在改善复合材料中纤维与基体间界面相容性方面的应用。最后,还介绍了ARGET ATRP(activators regenerated by electron transfer ATRP)方法由于具有大量减少铜用量,允许少量空气存在而且改性后纤维素易清洗等优点,有利于在纤维素改性工业中的推广应用。
文摘Hollow silica nanospheres were synthesized by silyl functionalized poly(vinyl benzyl chloride)(PVBC) latex nanoparticles via surface-initiated atom transfer radical polymerization(ATRP) of 3-(trimethoxysilyl)propyl methacrylate(TMSPM),followed by polycondensation with tetraethoxysi-lane(TEOS) in the ethanol-ammonia and removal of the PVBC cores by thermal decomposition.Transmission electron microscopy(TEM) were used to characterize the intermediate products and the hollow nanospheres.