为提高农业题材三维数字媒体内容制作效率,提出基于SPAD(soil and plant analyzer development)和生育期农学参数的作物叶片表观建模与可视化方法,并以玉米为例进行实际验证。将玉米叶片分成叶肉、一级叶脉、二级叶脉3种结构,首先获取...为提高农业题材三维数字媒体内容制作效率,提出基于SPAD(soil and plant analyzer development)和生育期农学参数的作物叶片表观建模与可视化方法,并以玉米为例进行实际验证。将玉米叶片分成叶肉、一级叶脉、二级叶脉3种结构,首先获取主要生育期下各结构表观材质(包括漫反射强度、透射强度、高光反射强度、粗糙度4种参数)及SPAD数据;之后构建各类表观材质参数与SPAD及生育期之间的定量化模型;再对玉米叶片纹理样式进行抽象,构建参数化的玉米纹理结构几何表达,并基于定量化模型为纹理结构分配表观参数;最后整合实时光照计算框架,对大田光环境下玉米表观进行可视化模拟。该文方法搭建了农业知识与三维可视化效果间的桥梁,使用户可以通过调整农学参数实现对作物叶片表观的快速、准确设计与制作,为农业题材的三维数字资源开发提供技术工具。展开更多
The plastic deformation simulation of AZ31 magnesium alloy at different elevated temperatures (from 473 to 723 K) was performed on Gleeble-1500 thermal mechanical simulator at the strain rates of 0.01, 0.1, 1, 5 and...The plastic deformation simulation of AZ31 magnesium alloy at different elevated temperatures (from 473 to 723 K) was performed on Gleeble-1500 thermal mechanical simulator at the strain rates of 0.01, 0.1, 1, 5 and 10 s-t and the maximum deformation degree of 80%. The relationship between the flow stress and deformation temperature as well as strain rate was analyzed. The materials parameters and the apparent activation energy were calculated. The constitutive relationship was established with a Zener-Hollomon (Z) parameter. The results show that the flow stress increases with the increase of strain rate at a constant temperature, but it decreases with the increase of deformation temperature at a constant strain rate. The apparent activation energy is estimated to be 129-153 kJ/mol, which is close to that for self-diffusion of magnesium. The established constitutive relationship can reflect the change of flow stress during hot deformation.展开更多
文摘为提高农业题材三维数字媒体内容制作效率,提出基于SPAD(soil and plant analyzer development)和生育期农学参数的作物叶片表观建模与可视化方法,并以玉米为例进行实际验证。将玉米叶片分成叶肉、一级叶脉、二级叶脉3种结构,首先获取主要生育期下各结构表观材质(包括漫反射强度、透射强度、高光反射强度、粗糙度4种参数)及SPAD数据;之后构建各类表观材质参数与SPAD及生育期之间的定量化模型;再对玉米叶片纹理样式进行抽象,构建参数化的玉米纹理结构几何表达,并基于定量化模型为纹理结构分配表观参数;最后整合实时光照计算框架,对大田光环境下玉米表观进行可视化模拟。该文方法搭建了农业知识与三维可视化效果间的桥梁,使用户可以通过调整农学参数实现对作物叶片表观的快速、准确设计与制作,为农业题材的三维数字资源开发提供技术工具。
基金Project supported by China-Canada-USA Collaborative Research and Development Project (Magnesium Front End Research and Development (MFERD))
文摘The plastic deformation simulation of AZ31 magnesium alloy at different elevated temperatures (from 473 to 723 K) was performed on Gleeble-1500 thermal mechanical simulator at the strain rates of 0.01, 0.1, 1, 5 and 10 s-t and the maximum deformation degree of 80%. The relationship between the flow stress and deformation temperature as well as strain rate was analyzed. The materials parameters and the apparent activation energy were calculated. The constitutive relationship was established with a Zener-Hollomon (Z) parameter. The results show that the flow stress increases with the increase of strain rate at a constant temperature, but it decreases with the increase of deformation temperature at a constant strain rate. The apparent activation energy is estimated to be 129-153 kJ/mol, which is close to that for self-diffusion of magnesium. The established constitutive relationship can reflect the change of flow stress during hot deformation.