以稀疏表示理论为出发点,分析信号的压缩感知理论与传统Nyquist采样定理的理论对比结果,根据Co Sa MP算法和IFFT信号重构结果,定性和定量地分析了信号内部冗余性与利用这种冗余特征进行减运算量处理的可行性,进一步探讨信号的非均匀化处...以稀疏表示理论为出发点,分析信号的压缩感知理论与传统Nyquist采样定理的理论对比结果,根据Co Sa MP算法和IFFT信号重构结果,定性和定量地分析了信号内部冗余性与利用这种冗余特征进行减运算量处理的可行性,进一步探讨信号的非均匀化处理,包括分数域和分形等方法在信号处理领域的适应性。展开更多
针对空谱信息中普遍存在的异常干扰现象,提出了基于空谱联合聚类的自适应核协同表示高光谱异常目标探测算法.算法充分发挥了基于密度的聚类算子(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对于异常点的筛选...针对空谱信息中普遍存在的异常干扰现象,提出了基于空谱联合聚类的自适应核协同表示高光谱异常目标探测算法.算法充分发挥了基于密度的聚类算子(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对于异常点的筛选特性,在DBSCAN聚类去除异常波谱的基础上,采用分波段子集随机投影变换对数据降维处理,以减少谱噪声和谱冗余,并采用DBSCAN聚类消除了局部背景像元中的杂乱点对协同探测算法结果的干扰.研究了背景离散度对核参选择的影响,比较了不同的核估计方法,并提出基于平均差的自适应核协同算法.采用该方法对AVIRIS和ROSIS的三组数据进行仿真实验并与现有算法进行了对比,结果表明该算法表现出较好的探测性能.展开更多
The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibrat...The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibration signals. To avoid the problem in choosing and extracting the fault features in bearing fault diagnosing, a novelty fault diagnosis method based on sparse decomposition theory is proposed. Certain over-complete dictionaries are obtained by training, on which the bearing vibration signals corresponded to different states can be decomposed sparsely. The fault detection and state identification can be achieved based on the fact that the sparse representation errors of the signal on different dictionaries are different. The effects of the representation error threshold and the number of dictionary atoms used in signal decomposition to the fault diagnosis are analyzed. The effectiveness of the proposed method is validated with experimental bearing vibration signals.展开更多
文摘针对空谱信息中普遍存在的异常干扰现象,提出了基于空谱联合聚类的自适应核协同表示高光谱异常目标探测算法.算法充分发挥了基于密度的聚类算子(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)对于异常点的筛选特性,在DBSCAN聚类去除异常波谱的基础上,采用分波段子集随机投影变换对数据降维处理,以减少谱噪声和谱冗余,并采用DBSCAN聚类消除了局部背景像元中的杂乱点对协同探测算法结果的干扰.研究了背景离散度对核参选择的影响,比较了不同的核估计方法,并提出基于平均差的自适应核协同算法.采用该方法对AVIRIS和ROSIS的三组数据进行仿真实验并与现有算法进行了对比,结果表明该算法表现出较好的探测性能.
基金Projects(51375484,51475463)supported by the National Natural Science Foundation of ChinaProject(kxk140301)supported by Interdisciplinary Joint Training Project for Doctoral Student of National University of Defense Technology,China
文摘The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibration signals. To avoid the problem in choosing and extracting the fault features in bearing fault diagnosing, a novelty fault diagnosis method based on sparse decomposition theory is proposed. Certain over-complete dictionaries are obtained by training, on which the bearing vibration signals corresponded to different states can be decomposed sparsely. The fault detection and state identification can be achieved based on the fact that the sparse representation errors of the signal on different dictionaries are different. The effects of the representation error threshold and the number of dictionary atoms used in signal decomposition to the fault diagnosis are analyzed. The effectiveness of the proposed method is validated with experimental bearing vibration signals.