期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于因素分解模型的两步人脸识别 被引量:1
1
作者 程载和 《计算机科学》 CSCD 北大核心 2017年第B11期263-266,共4页
为了减轻人脸识别中表情以及姿态等因素变化对识别结果的影响,Xu提出了利用原始样本和对称样本的两步人脸识别算法。但当人脸图像受外在因素干扰产生较大变化时,该方法的识别结果并不理想。因此提出了一种基于因素分解模型的两步人脸识... 为了减轻人脸识别中表情以及姿态等因素变化对识别结果的影响,Xu提出了利用原始样本和对称样本的两步人脸识别算法。但当人脸图像受外在因素干扰产生较大变化时,该方法的识别结果并不理想。因此提出了一种基于因素分解模型的两步人脸识别算法。新算法在特征提取过程中利用因素分解模型将"身份因素"和"表情因素"从人脸图像中分离出来,加以控制。然后提取测试集图像中的新身份和新表情,并将其与训练集中的旧身份或旧表情相互作用,合成新的人脸图像。同时为了保证分类精度,在识别阶段针对原始样本和合成样本分别采用两步人脸识别的方法,充分利用了分数层次融合的优势,进一步提高了算法的识别效果。 展开更多
关键词 人脸识别 表情因素 因素分解模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部