期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合多源评价数据的荔枝果期表型特征评估
1
作者 陆健强 袁家俊 +4 位作者 余超然 王卫星 牛宏宇 兰玉彬 谭扬奕 《农业机械学报》 北大核心 2025年第3期91-100,共10页
人工智能技术在荔枝表型获取方面的研究目前主要集中于对象识别、产量预估和采摘定位等,对荔枝完整果期生长质量的评价技术较为缺乏。本研究通过融合多源数据指标,对荔枝果期生长质量进行综合评估,生成荔枝果期评价画像。基于YOLO v7网... 人工智能技术在荔枝表型获取方面的研究目前主要集中于对象识别、产量预估和采摘定位等,对荔枝完整果期生长质量的评价技术较为缺乏。本研究通过融合多源数据指标,对荔枝果期生长质量进行综合评估,生成荔枝果期评价画像。基于YOLO v7网络框架提出果实识别算法LFS-YOLO,通过减少由动态环境背景引起的误差和影响,集成全局注意力能力,提升全景图像识别的准确性。其次,通过优化CIoU损失函数,添加考虑预期回归向量之间的角度,重新定义并改进角度惩罚测度以减少整体自由度,将预测框更有效地对齐到最近的轴上。通过融合多源数据,建立质量评估函数,为综合评价提供依据。试验结果表明,LFS-YOLO对果实识别精度达到89.1%,精确率为92.3%,召回率为93.0%,且生成的荔枝果期表型特征评估方法可显示荔枝果期影响生长质量各项指标,为荔枝果期综合评价发展提供启示作用。 展开更多
关键词 荔枝 表型特征评估 YOLO v7 全局注意力机制 综合评价 气象数据
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部