期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
基于神经辐射场和路径分析的油茶树表型参数提取 被引量:1
1
作者 朱幸辉 张杨聪 +1 位作者 谭泗桥 李斌 《农业工程学报》 北大核心 2025年第4期201-210,共10页
为提取油茶树的表型参数,解决复杂冠层结构植物和田间环境下表型提取速度慢且精度低的问题,该研究将传统的重建算法和聚类分割算法进行改进,提出一种基于神经辐射场和路径分析的表型参数提取方法。通过多视角相机获取油茶树图像,训练神... 为提取油茶树的表型参数,解决复杂冠层结构植物和田间环境下表型提取速度慢且精度低的问题,该研究将传统的重建算法和聚类分割算法进行改进,提出一种基于神经辐射场和路径分析的表型参数提取方法。通过多视角相机获取油茶树图像,训练神经辐射场生成三维点云模型,然后采用路径分析方法分割树干和叶片点云,提取油茶树的表型参数。试验结果表明:相比基于运动结构恢复的多视立体几何方法,采用神经辐射场重建的时间平均减少约90%,自由视角渲染图像峰值信噪比提升约10%。茎叶分割结果在召回率、精确率和分割时间等指标上优于几何特征法和区域生长法。计算的树高、冠幅、冠层高度和树干与人工测量结果的误差分别为0.519%、0.325%、0.364%、4.491%,叶长、叶宽、叶面积和叶形指数的决定系数分别为0.98、0.94、0.97、0.93。该方法不仅能快速构建真实形态的油茶树点云模型,而且能精准获取油茶树各器官的表型参数,可为复杂冠层植物的田间表型研究提供参考。 展开更多
关键词 油茶树 三维重建 神经辐射场 路径分析 表型参数
在线阅读 下载PDF
基于三维点云的黄瓜叶片分割与表型参数提取方法 被引量:1
2
作者 王纪章 姚承志 +2 位作者 周静 黄志刚 陈勇明 《农业机械学报》 北大核心 2025年第3期354-362,共9页
自动获取植株冠层表型形状对黄瓜育种和科学栽培至关重要。由于当前三维点云处理技术难以在黄瓜植株点云上对茎叶进行有效分离,分割准确率和效率较低。本文提出了一种改进的区域生长分割算法,并对分割后叶片进行表型提取。首先通过深度... 自动获取植株冠层表型形状对黄瓜育种和科学栽培至关重要。由于当前三维点云处理技术难以在黄瓜植株点云上对茎叶进行有效分离,分割准确率和效率较低。本文提出了一种改进的区域生长分割算法,并对分割后叶片进行表型提取。首先通过深度相机从4个角度采集黄瓜点云数据,在统计滤波和颜色滤波去除背景噪声以及离群点的基础上,基于旋转轴和广义最近点迭代(Generalized nearest point iterative,GICP)算法对点云进行配准获取完整黄瓜植株点云;使用体素和移动最小二乘算法(Moving lest squares,MLS)对区域生长算法进行改进,实现茎叶分离与叶片分割;分割后叶片点云自动提取叶片数量、叶面积、叶长、叶宽、叶周长表型参数。实验结果表明,与传统区域生长算法相比,改进区域生长算法可以精准地分割出单个叶片,对移栽15 d的准确率平均提升12.5个百分点,对移栽60 d的准确率平均提升22.5个百分点。叶面积、叶长、叶宽、叶周长4个参数与真实测量值相比决定系数R^(2)分别为0.96、0.93、0.93、0.94,均方根误差(RMSE)分别为12.69 cm^(2)、0.93 cm、0.98 cm、2.27 cm。本文提出的方法能够从单株黄瓜点云中高效地分割出单个叶片点云,并准确地计算相关表型性状,为温室黄瓜高通量自动化表型测量提供有力的技术支持。 展开更多
关键词 黄瓜叶片 三维点云 表型参数 分割
在线阅读 下载PDF
基于SwinPoinTr的视角受限下杏鲍菇表型参数测量方法
3
作者 谢立敏 黄轶 +2 位作者 吴昊宇 叶大鹏 方兵 《农业机械学报》 北大核心 2025年第3期148-157,共10页
针对菇房内杏鲍菇表型参数测量任务中,由于扫描设备视角受限,扫描的杏鲍菇点云出现残缺问题,基于AdaPoinTr(Adaptive geometry-aware point transformers)提出了改进的SwinPoinTr模型,实现了对残缺杏鲍菇点云的准确补全和杏鲍菇表型参... 针对菇房内杏鲍菇表型参数测量任务中,由于扫描设备视角受限,扫描的杏鲍菇点云出现残缺问题,基于AdaPoinTr(Adaptive geometry-aware point transformers)提出了改进的SwinPoinTr模型,实现了对残缺杏鲍菇点云的准确补全和杏鲍菇表型参数的测量。该方法在使用提出的特征重塑模块的基础上,构建具有几何感知能力的层次化Transformer编码模块,提高了模型对输入点云的利用率和模型捕捉点云细节特征的能力。然后基于泊松重建方法完成了补全点云表面重建,并测量到杏鲍菇表型参数。实验结果表明,本文所提算法在残缺杏鲍菇点云补全任务中,模型倒角距离为1.316×10^(-4),地球移动距离为21.3282,F1分数为87.87%。在表型参数估测任务中,模型对杏鲍菇菌高、体积、表面积估测结果的决定系数分别为0.9582、0.9596、0.9605,均方根误差分别为4.4213 mm、10.8185 cm^(3)、7.5778 cm^(2)。结果证实了该研究方法可以有效地补全残缺的杏鲍菇点云,可以为菇房内杏鲍菇表型参数测量提供基础。 展开更多
关键词 杏鲍菇 智慧菇房 表型参数 点云补全 泊松重建 SwinPoinTr
在线阅读 下载PDF
基于图像处理和三维点云的荔枝表型参数提取
4
作者 陈海波 向星岚 +5 位作者 龚康业 李正心 黄顺豪 李纯熙 蔡晓峰 曾山 《华南农业大学学报》 北大核心 2025年第5期719-728,共10页
【目的】荔枝Litchi chinensis的表型参数提取对荔枝采后分级具有重要作用,为解决荔枝采后分级效率低下的问题,本文提出了一种利用图像处理和三维点云技术的荔枝表型参数提取方法,一次性获取多种表型性状。【方法】利用Intel Realsense ... 【目的】荔枝Litchi chinensis的表型参数提取对荔枝采后分级具有重要作用,为解决荔枝采后分级效率低下的问题,本文提出了一种利用图像处理和三维点云技术的荔枝表型参数提取方法,一次性获取多种表型性状。【方法】利用Intel Realsense D405深度传感器同时获取4个不同视角下的荔枝RGB彩色图像和深度图像,通过映射得到荔枝三维点云;根据获取的荔枝点云,计算点云曲率及法向量,识别荔枝机械损伤区域;将荔枝的RGB彩色图像在颜色空间下进行转换,判断红色像素点阈值并提取荔枝表面的红色着色率;建立荔枝的3D模型,通过计算深度图像的厚度估算荔枝体积。【结果】通过荔枝表面三维点云的曲率成功识别荔枝的机械损伤,平均检测准确率为94%;采用RGB图像提取着色率相较于采用三维点云在检测速度上提升90%,基于RGB图像和三维点云的着色率结果与人工检测结果的决定系数分别为0.957 4和0.920 5,平均绝对误差分别为6.33%和4.37%,平均相对误差分别为4.17%和6.01%。基于深度图像提取的荔枝体积与人工测量体积的决定系数为0.890 1,平均绝对误差为1.59 cm3,平均相对误差为7.94%。【结论】本研究提出的方法能够提高荔枝表型参数提取的准确率,可为荔枝采后分级提供高效技术手段和数据支持。 展开更多
关键词 荔枝 点云 图像处理 深度图像 表型参数 无损检测
在线阅读 下载PDF
基于Kinect V3传感器的叶菜类作物三维重建与表型参数获取
5
作者 陈允琳 兰玉彬 +3 位作者 韩鑫 王娟 王会征 傅亮 《农业机械学报》 北大核心 2025年第3期101-110,197,共11页
作物三维重建是实现作物表型量化和精准获取的有效手段,可为育种和栽培提供基础数据支撑。本文提出了一种基于Kinect V3传感器的叶菜类作物三维重建与表型参数无损获取方法。首先,设计了一种可实现作物多视角点云快速采集的低成本三维... 作物三维重建是实现作物表型量化和精准获取的有效手段,可为育种和栽培提供基础数据支撑。本文提出了一种基于Kinect V3传感器的叶菜类作物三维重建与表型参数无损获取方法。首先,设计了一种可实现作物多视角点云快速采集的低成本三维重建平台,其载物台面设计成多个标定点,可利用台面信息进行点云水平校准。其次,采用载物台恢复与广义迭代最近点(Generalized iterative closest point,GICP)算法相结合的方式对获取的多视角点云进行配准拼接,实现叶菜类作物三维重建。最后,借助有效的表型参数测量,实现对叶菜类作物株高、叶长、叶宽、叶面积等表型参数的精准获取。为评估该方法相似度,选取木耳菜、甘蓝、茄子、紫背天葵的苗期植株为试验对象,将其与SFM-MVS方法进行对比。试验结果表明,木耳菜、甘蓝、茄子、紫背天葵点云间平均距离误差分别为0.381、0.340、0.195、0.270 cm,二者的三维重建结果具有较高相似度。与人工实测值相比,借助该方法提取木耳菜和紫背天葵株高、叶长、叶宽、叶面积决定系数均不低于0.903,平均绝对百分比误差不高于9.759%,木耳菜和紫背天葵株高、叶长、叶宽、叶面积均方根误差分别为0.366 cm、0.203 cm、0.290 cm、3.182 cm^(2)和0.496 cm、0.344 cm、0.282 cm、0.825 cm^(2),表明其具有较高测量精度。上述方法可为设施农业育种和栽培提供快捷、高效的作物表型获取途径。 展开更多
关键词 叶菜类作物 三维重建 表型参数 Kinect V3传感器 相似度
在线阅读 下载PDF
基于YOLO v8-ABSeg的双孢蘑菇表型参数提取方法 被引量:3
6
作者 苗全龙 周扬 +2 位作者 李建涛 周延锁 李玉 《农业机械学报》 北大核心 2025年第3期158-168,共11页
针对双孢蘑菇采摘前人工获取其表型参数效率低、成本高的问题,提出了一种基于实例分割且适用于现代化工厂环境的双孢蘑菇表型参数提取方法。首先,对YOLO v8n-Seg实例分割模型进行改进,引入快速神经网络(Faster neural network,FasterNe... 针对双孢蘑菇采摘前人工获取其表型参数效率低、成本高的问题,提出了一种基于实例分割且适用于现代化工厂环境的双孢蘑菇表型参数提取方法。首先,对YOLO v8n-Seg实例分割模型进行改进,引入快速神经网络(Faster neural network,FasterNet),并采用局部卷积(Partial convolutions,PConv)减少冗余计算和内存访问,引入SE(Squeeze-and-excitation)注意力机制到特征融合网络中,增加了网络对输入信息中重要部分的关注度,降低无关信息的干扰,改进后的模型完成了对双孢蘑菇目标的实例分割。最后,基于分割结果,提出了双孢蘑菇子实体4种表型参数的提取方法,包括菇盖直径、菇盖圆度、菇盖白度以及菇盖表面色斑。实验结果表明,YOLO v8-ABSeg模型在自建双孢蘑菇数据集上的mask精度比原模型提高了1.6个百分点,且参数量、浮点数运算量和内存占用量分别降低了38.7%、25.0%和36.8%,帧率提高了11.3%。此外,双孢蘑菇表型参数计算结果与人工测量结果误差小于10%。该方法可应用于双孢蘑菇表型参数的自动化获取,为生长模型建立、在线实时环境控制等提供技术基础。 展开更多
关键词 双孢蘑菇 表型参数提取 实例分割 轻量化 注意力机制 YOLO v8
在线阅读 下载PDF
基于改进YOLOv11-Pose的玉米植株骨架及表型参数提取方法
7
作者 牛子昂 裘正军 《智慧农业(中英文)》 2025年第2期95-105,共11页
[目的/意义]玉米植株骨架和表型参数的精准提取是获取植株生长状态、形态分析及农业管理的重要基础。然而,大田种植环境下的光照变化、复杂背景、叶片遮挡等对骨架和表型参数的提取带来了严峻挑战。本研究提出一种适用于田间的玉米植株... [目的/意义]玉米植株骨架和表型参数的精准提取是获取植株生长状态、形态分析及农业管理的重要基础。然而,大田种植环境下的光照变化、复杂背景、叶片遮挡等对骨架和表型参数的提取带来了严峻挑战。本研究提出一种适用于田间的玉米植株骨架和表型参数提取方法,以提升提取的精度与效率,为玉米表型数据获取提供技术支撑。[方法]提出了一种基于改进YOLOv11-Pose的多目标关键点检测网络,采用自上而下的检测框架对玉米植株关键点进行检测与骨架重建。通过均匀采样算法设计适用于玉米骨架的关键点表示方法,以优化骨架的任务适应性;同时,分别在网络的骨干、头部加入单头自注意力机制、卷积注意力机制,引导模型关注遮挡区域和粘连部位,从而提高对复杂场景的适应能力。[结果和讨论]在田间玉米环境中测试结果表明,当均匀采样关键点数量设置为10时,Fréchet距离达到最低值79.008,既能有效保持原始骨架的形态特征,又能避免冗余点影响,为后续建模提供高效、准确的骨架数据基础。在该设置下,改进YOLOv11-Pose模型的边界框检测精度为0.717;关键点检测的mAP50和mAP50-95分别提升了10.9%和23.8%,单张图片推理耗时52.7 ms。测试结果表明,该模型在复杂田间环境中展现出卓越性能和较低计算成本,在关键点检测任务中具有更高的精度和鲁棒性。研究进一步结合骨架提取结果和空间几何信息,实现株高测量平均绝对误差为2.435 cm,叶龄检测误差小于1个生长时期,叶长测量误差3.482%,验证了所提出的方法在表型参数测量应用方面的有效性和实用性。[结论]本研究提出的改进YOLOv11-Pose模型能够高效、精准地提取玉米植株骨架和表型参数,为粮食生产数据获取与精准农业管理提供了技术支持。 展开更多
关键词 作物长势 关键点检测 注意力机制 表型参数 玉米植株骨架 YOLOv11
在线阅读 下载PDF
基于YOLO v8和CycleGAN的红掌植株表型参数自动提取方法 被引量:4
8
作者 卢鹏 孙天文 +2 位作者 陈明 王振华 郑宗生 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期154-159,319,共7页
植株表型参数是描述植物形态、结构和生理特征的定量化指标,可揭示植物生长规律,以及与环境因素之间的关系。现有的人工测量和激光雷达点云植株表型参数提取方法存在数据误差大、易损伤植株、成本高和数据量大等问题。为此,本文提出了... 植株表型参数是描述植物形态、结构和生理特征的定量化指标,可揭示植物生长规律,以及与环境因素之间的关系。现有的人工测量和激光雷达点云植株表型参数提取方法存在数据误差大、易损伤植株、成本高和数据量大等问题。为此,本文提出了一种基于YOLO v8和CycleGAN的红掌植株表型参数自动提取方法,利用双重注意力机制CBAM改进YOLO v8,提高模型特征提取能力,对红掌植株叶片进行检测与分割;通过Grabcut算法去除分割后图像背景区域特征,并利用VGG模型对其进行分类,分出完整型红掌植株叶片和缺失型红掌植株叶片;在CycleGAN的生成器中引入双重注意力机制和特征金字塔,提高模型多尺度特征的提取能力,引入SmoohL1损失函数,提升模型稳定性,对缺失型红掌植株叶片进行修复;提出一种表型参数提取算法(Phenotypic parameters extraction algorithms,PPEA),实现对红掌植株叶长、叶宽和叶面积的自动提取。以650幅自建数据集为例,对上述方法进行了比较与分析,实验结果证明,本文方法在红掌植株表型参数自动提取方面具有良好的效果。 展开更多
关键词 表型参数提取 红掌 目标检测 图像修复 YOLO v8 CycleGAN
在线阅读 下载PDF
基于VGG-UNet的食用菌菌丝体表型参数自动测量方法 被引量:7
9
作者 陈燕 陆嘉豪 +1 位作者 胡小春 祁亮亮 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期233-240,共8页
食用菌菌丝体表型特征是食用菌种质资源评价和科学育种的重要依据。针对传统阈值分割方法提取菌丝体区域易受到光照不均、菌丝体不规则生长和培养皿内产生代谢物等因素干扰的问题,制作食用菌菌丝体图像数据集,并提出一种基于深度学习的... 食用菌菌丝体表型特征是食用菌种质资源评价和科学育种的重要依据。针对传统阈值分割方法提取菌丝体区域易受到光照不均、菌丝体不规则生长和培养皿内产生代谢物等因素干扰的问题,制作食用菌菌丝体图像数据集,并提出一种基于深度学习的食用菌菌丝体表型参数自动测量方法。将U-Net网络编码器部分替换为VGG16的前13个卷积层,引入预训练权重,构建适用于菌丝体分割的VGG-UNet模型。测试集上对比实验表明,该模型的平均交并比达到98.18%,比原始U-Net模型高0.93个百分点。经该模型获取菌丝体分割图像后,利用OpenCV相关函数计算菌丝体的半径、周长、面积、覆盖度、圆整度这5个表型参数。将人工测量方法与本文方法进行线性回归分析,得出菌丝体半径、周长、面积和覆盖度的决定系数分别为0.979 5、0.991 5、0.975 0和0.975 0,均方根误差分别为2.20 mm、4.73 mm、176.74 mm^(2)和3.16%。经测试,本文方法能准确地完成食用菌菌丝体表型参数自动测量任务,为食用菌表型分析研究提供理论基础。 展开更多
关键词 食用菌菌丝体 表型参数 深度学习 图像处理 语义分割 VGG-UNet
在线阅读 下载PDF
基于神经辐射场的苗期作物三维建模和表型参数获取 被引量:6
10
作者 朱磊 江伟 +3 位作者 孙伯颜 柴明堂 李赛驹 丁一民 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期184-192,230,共10页
苗期作物三维结构的精准高效重建是获取表型信息的重要基础。传统的三维重建大多基于运动恢复结构-多视图立体视觉(Structure from motion and multi-view stereo,SFM-MVS)算法,计算成本高,难以满足快速获取表型参数的需求。本研究提出... 苗期作物三维结构的精准高效重建是获取表型信息的重要基础。传统的三维重建大多基于运动恢复结构-多视图立体视觉(Structure from motion and multi-view stereo,SFM-MVS)算法,计算成本高,难以满足快速获取表型参数的需求。本研究提出一种基于神经辐射场(Neural radiance fields,NeRF)的苗期作物三维建模和表型参数获取系统,利用手机获取不同视角下的RGB影像,通过NeRF算法完成三维模型的构建。在此基础上,利用点云库(Point cloud library,PCL)中的直线拟合和区域生长等算法自动分割植株,并采用距离最值遍历、圆拟合和三角面片化等算法实现了精准测量植株的株高、茎粗和叶面积等表型参数。为评估该方法的重建效率和表型参数测量精度,本研究分别选取辣椒、番茄、草莓和绿萝的苗期植株作为试验对象,对比NeRF算法与SFM-MVS算法的重建结果。结果表明,以SFM-MVS方法重建点云为基准,NeRF方法重建的各植株点云点对距离均方根误差仅为0.128~0.395 cm,两者重建质量较接近,但在重建速度方面,本文研究方法相比于SFM-MVS方法平均重建速度提高700%。此外,该方法提取辣椒苗株高、茎粗决定系数(R^(2))分别为0.971和0.907,均方根误差(RMSE)分别为0.86 cm和0.017 cm,对各苗期植株叶面积提取的R^(2)为0.909~0.935,RMSE为0.75~3.22 cm^(2),具有较高的测量精度。本研究提出的方法可以显著提高三维重建和表型参数获取效率,从而为作物育种选苗提供更为高效的技术手段。 展开更多
关键词 苗期作物 三维重建 神经辐射场 表型参数 叶面积
在线阅读 下载PDF
基于YOLOv5m和CBAM-CPN的单分蘖水稻表型参数提取 被引量:7
11
作者 陈慧颖 宋青峰 +4 位作者 常天根 郑立华 朱新广 张漫 王敏娟 《农业工程学报》 EI CAS CSCD 北大核心 2024年第2期307-314,共8页
为快速获取单分蘖水稻植株的形态结构和表型参数,该研究提出了一种基于目标检测和关键点检测模型相结合的骨架提取和表型参数获取方法。该方法基于目标检测模型生成穗、茎秆、叶片的边界框和类别,将所得数据分别输入到关键点检测模型检... 为快速获取单分蘖水稻植株的形态结构和表型参数,该研究提出了一种基于目标检测和关键点检测模型相结合的骨架提取和表型参数获取方法。该方法基于目标检测模型生成穗、茎秆、叶片的边界框和类别,将所得数据分别输入到关键点检测模型检测各部位关键点,按照语义信息依次连接关键点形成植株骨架,依据关键点坐标计算穗长度、茎秆长度、叶片长度、叶片-茎秆夹角4种表型参数。首先,构建单分蘖水稻的关键点检测和目标检测数据集;其次,训练Faster R-CNN、YOLOv3、YOLOv5s、YOLOv5m目标检测模型,经过对比,YOLOv5m的检测效果最好,平均精度均值(mean average precision,mAP)达到91.17%;然后,应用人体姿态估计的级联金字塔网络(cascaded pyramid network,CPN)提取植株骨架,并引入注意力机制CBAM(convolutional block attention module)进行改进,与沙漏网络(hourglass networks,HN)、堆叠沙漏网络模型(stacked hourglass networks,SHN)和CPN模型相比,CBAM-CPN模型的预测准确率分别提高了9.68、8.83和1.06个百分点,达到94.75%,4种表型参数的均方根误差分别为1.06 cm、0.81 cm、1.25 cm和2.94°。最后,结合YOLOv5m和CBAM-CPN进行预测,4种表型参数的均方根误差分别为1.48、1.05、1.74cm和2.39°,与SHN模型相比,误差分别减小1.65 cm、3.43 cm、2.65 cm和4.75°,生成的骨架基本能够拟合单分蘖水稻植株的形态结构。所提方法可以提高单分蘖水稻植株的关键点检测准确率,更准确地获取植株骨架和表型参数,有助于加快水稻的育种和改良。 展开更多
关键词 目标检测 注意力机制 水稻 关键点检测 骨架提取 表型参数 单分蘖植株
在线阅读 下载PDF
基于三维点云的木荷幼苗表型参数自动测量方法 被引量:2
12
作者 王斐 周扬 +3 位作者 龙伟 王斌 周志春 吴统贵 《传感器与微系统》 CSCD 北大核心 2024年第5期121-124,共4页
本文提出了一种基于Azure Kinect传感器无损测量三维点云的表型参数测量方法。该方法包括预处理、茎叶分割和表型参数计算3个步骤。首先通过预处理将植株点云从场景点云中提取出来,在茎叶分割步骤历经骨架化、骨架修剪、茎线识别和叶片... 本文提出了一种基于Azure Kinect传感器无损测量三维点云的表型参数测量方法。该方法包括预处理、茎叶分割和表型参数计算3个步骤。首先通过预处理将植株点云从场景点云中提取出来,在茎叶分割步骤历经骨架化、骨架修剪、茎线识别和叶片分割几个分步骤将木荷植株的茎干和叶片分离,最后得到株高、茎长、茎的方向、叶长和叶角等表型参数。实验结果表明,每个参数的决定系数(R~2>0.85)和均方根误差(RMSE)均达到了精度要求,说明了该方法是稳健和准确的。 展开更多
关键词 木荷 Azure Kinect 点云 骨架化 表型参数提取
在线阅读 下载PDF
基于无人机图像纹理和表型参数的夏玉米水分胁迫诊断 被引量:3
13
作者 谢坪良 张智韬 +7 位作者 巴亚岚 董宁 左西宇 杨宁 陈俊英 程智楷 张蓓 杨晓飞 《农业工程学报》 EI CAS CSCD 北大核心 2024年第10期136-146,共11页
农田水分胁迫是影响作物生长发育和产量品质的重要原因。及时准确地诊断作物水分胁迫状况,对于实现精准灌溉、提高作物抗逆性和产量等具有重要意义。为优化夏玉米水分胁迫诊断方法和提高诊断精度,该研究以夏玉米为对象,利用无人机搭载... 农田水分胁迫是影响作物生长发育和产量品质的重要原因。及时准确地诊断作物水分胁迫状况,对于实现精准灌溉、提高作物抗逆性和产量等具有重要意义。为优化夏玉米水分胁迫诊断方法和提高诊断精度,该研究以夏玉米为对象,利用无人机搭载六通道多光谱传感器获取2022年夏玉米拔节期和抽雄期的遥感影像数据,且同步采集夏玉米气孔导度和表型参数数据,监督分类剔除冗余背景后使用灰度共生矩阵计算得到冠层植被指数和图像纹理信息,通过贝叶斯信息准则和全子集筛选法筛选出敏感的植被指数、图像纹理和表型参数及其组合,结合极限学习机、随机森林和反向传播神经网络3种机器学习方法构建夏玉米气孔导度预估模型,并基于最优气孔导度预估模型绘制夏玉米水分胁迫状况反演图。结果表明,多光谱图像的夏玉米冠层反射率与气孔导度呈弱负相关,植被指数和表型参数与气孔导度呈显著正相关,不同波段的图像纹理均与气孔导度有较高的相关性。植被指数用于评估植被整体健康和水分状况,图像纹理用于捕捉作物空间分布、纹理和结构特征,表型参数用于立体反映作物生理和形态信息,它们在诊断作物水分胁迫的机理上具有互补性。基于植被指数、图像纹理和表型参数构建的反向传播神经网络模型是夏玉米水分胁迫诊断的最佳模型(决定系数为0.841,均方根误差为0.043 mol/(m^(2)·s),平均绝对误差为0.034 mol/(m^(2)·s)),并显著改善了对气孔导度较低值的低估情况。绘制的夏玉米水分胁迫状况反演图呈现出广泛的应用潜力,能够便捷准确地诊断作物水分胁迫状况,以优化灌溉策略,调整资源分配。研究结果可为夏玉米的水分胁迫诊断提供一种可行而准确的方法。 展开更多
关键词 无人机 水分胁迫 气孔导度 植被指数 图像纹理 表型参数
在线阅读 下载PDF
基于TLS和ALS融合数据的杨树林木表型参数提取研究
14
作者 虞晨音 杨杰 +3 位作者 温小荣 杨丽 叶金盛 汪求来 《西北林学院学报》 CSCD 北大核心 2024年第5期61-67,共7页
基于激光雷达手段获取杨树林木表型参数的方法,探究树木点云提取更优林木表型参数的能力,为林木经营方案的编制提供有力的数据支撑与参考依据。根据地基激光雷达(TLS)与机载激光雷达(ALS)的融合点云数据,利用几何特征树木骨架、提取不... 基于激光雷达手段获取杨树林木表型参数的方法,探究树木点云提取更优林木表型参数的能力,为林木经营方案的编制提供有力的数据支撑与参考依据。根据地基激光雷达(TLS)与机载激光雷达(ALS)的融合点云数据,利用几何特征树木骨架、提取不完全模拟水分和养分传输的算法(ISTTWN),建立三维单木模型,并获取杨树单木的胸径、树高以及枝条属性因子。结果表明,融合数据的胸径、树高提取值的平均值均高于TLS数据的提取值,同时提取精度也更高。在所提取的枝条属性因子中,提取精度依次为着枝高度>枝长>弦长>着枝角度>分枝角度>弓高,且融合数据的提取精度更高。从RMSE、MAE、MAPE、R^(2)4个方面对枝条属性因子进行提取精度评价,枝长的拟合度最高,地基和融合点云提取值分别达到0.985、0.989;角度的拟合度相对较低,TLS着枝角度提取值的R^(2)仅0.775,但融合后的着枝角度的拟合度提升明显,达到0.887。基于不同相对着枝高度对提取精度分析,未融合前相对着枝高度0.4~0.6的枝条属性精度最高,而后其精度随着冠层高度的增加而降低,由于融合后的冠层点云密度提高,枝条属性因子的提取精度较融合前显著提升,且在相对着枝高度0.8~1.0时提高最为明显,相对提取精度最低的弓高提高了10.04%。研究认为TLS与ALS融合点云数据后,由于数据之间的相互弥补,有效提高点云密度,在三维树木模型研建中能够显著提高林木表型参数的数据提取精度,其中冠层提取精度提升最为明显。 展开更多
关键词 地基激光雷达 融合点云数据 ISTTWN算法 林木表型参数 枝条属性因子
在线阅读 下载PDF
基于无人机遥感的作物表型参数获取和应用研究进展 被引量:4
15
作者 曾世伟 侯学会 +3 位作者 王宗良 骆秀斌 巫志雄 王宏军 《山东农业科学》 北大核心 2024年第4期172-180,共9页
作物表型参数是由基因和环境因素决定或影响的作物生理、生化特征和性状。通过获取不同环境、不同生长时期的作物表型信息,可直观了解作物生长状况,以及时调整栽培管理措施,保障作物高效生产。无人机搭载RGB相机、光谱相机、激光雷达等... 作物表型参数是由基因和环境因素决定或影响的作物生理、生化特征和性状。通过获取不同环境、不同生长时期的作物表型信息,可直观了解作物生长状况,以及时调整栽培管理措施,保障作物高效生产。无人机搭载RGB相机、光谱相机、激光雷达等传感器,可充分发挥灵活性好、获取数据效率高、成本相对较低等优势,实现作物表型参数信息的高效获取,同时,快速发展的图像处理和识别分类技术又为无人机遥感获取的作物表型参数信息提供了有效的处理和分析方法,从而使得作物监测更加便捷、高效。本文总结了无人机遥感获取作物表型参数信息的流程与方法,概括了基于无人机遥感开展作物株高、冠层覆盖度、叶面积指数、水分胁迫、生物量、产量等表型参数研究的现状,并对无人机遥感技术在作物表型参数信息解析方面的应用前景进行了展望,以期为充分发挥该技术在农业生产中的作用提供参考。 展开更多
关键词 无人机遥感 作物表型参数 作物监测
在线阅读 下载PDF
基于激光扫描技术的小麦植株三维重建与表型参数提取
16
作者 崔腾予 朱少龙 +2 位作者 韩东伟 刘涛 孙成明 《江苏农业科学》 北大核心 2024年第20期56-61,共6页
小麦植株表型信息是小麦品种特性和生长发育规律的外在展示,对小麦的栽培调控具有重要的指导意义。常规的作物表型信息获取以人工测量为主,存在数据偏差大、投入时间多、获取效率低等问题。本研究利用超高精度的三维(3D)激光扫描仪,在... 小麦植株表型信息是小麦品种特性和生长发育规律的外在展示,对小麦的栽培调控具有重要的指导意义。常规的作物表型信息获取以人工测量为主,存在数据偏差大、投入时间多、获取效率低等问题。本研究利用超高精度的三维(3D)激光扫描仪,在实验室内获取小麦个体和群体植株3D点云数据,并进行点云数据预处理,构建小麦植株3D结构模型。在此基础上提取叶片三角网点云并换算成叶面积,提取叶片骨架点云换算成叶片长度和叶片最大宽度,提取小麦植株顶点到基部点云换算成植株高度。通过实地手工测量值的验证,小麦3D模型提取的叶面积、叶片长度、叶片最大宽度、植株高度与实测值的r 2分别为0.91、0.95、0.82、0.95,相关性均达到极显著水平,RMSE较小,分别为0.54 cm 2、0.73 cm、0.05 cm和1.18 cm。上述研究结果表明,基于3D点云数据提取的小麦表型参数与实测值较为接近,结果可靠,为小麦生长监测和表型数据获取等提供了一种新的方法。 展开更多
关键词 小麦植株 3D激光扫描 点云 3D激光重建 表型参数
在线阅读 下载PDF
基于骨架提取算法的作物表型参数提取方法 被引量:16
17
作者 宗泽 张雪 +3 位作者 郭彩玲 马丽 刘刚 弋景刚 《农业工程学报》 EI CAS CSCD 北大核心 2015年第S2期180-185,共6页
作物育种表型分析研究中,株型参数的获取多以人工测量为主,比较耗时费力。该文基于最小二乘法和遗传算法相结合,提出了一种用于计算作物表型参数的骨架提取方法。以玉米作物为例,首先为去噪后的作物二值图像进行单像素细化,利用角点检... 作物育种表型分析研究中,株型参数的获取多以人工测量为主,比较耗时费力。该文基于最小二乘法和遗传算法相结合,提出了一种用于计算作物表型参数的骨架提取方法。以玉米作物为例,首先为去噪后的作物二值图像进行单像素细化,利用角点检测归类算法,检测出特征点;依据骨架图像茎叶角点,利用图像分割将作物茎和叶分离,并对应图像中作物的茎和叶骨架,得到玉米作物空间离散点的实际三维坐标;融合最小二乘法和遗传算法,绘制出离散点的空间拟合曲线,即茎和叶的平滑骨架,从而提取出玉米作物的表型参数。田间试验分析表明,使用该算法能够有效地得到玉米作物的平滑骨架,而且与前人方法相比,测量得到表型参数中,株高误差减小了35%,叶长误差减小了70%,叶倾角误差减小了20%,有效地提高了作物表型参数的测量精度。该研究为提高作物表型参数尤其是株型参数精度提供了参考。 展开更多
关键词 算法 提取 测量 表型参数 曲线拟合 骨架提取
在线阅读 下载PDF
基于几何模型的绿萝叶片外部表型参数三维估测 被引量:10
18
作者 徐焕良 马仕航 +3 位作者 王浩云 胡华东 殷佳来 车建华 《农业机械学报》 EI CAS CSCD 北大核心 2020年第12期220-228,共9页
为快速高效获取叶类植物叶片的外部表型参数、掌握植株生长状况,以绿萝叶片为研究对象,提出一种基于几何模型的叶长、叶宽与叶面积的三维估测方法。利用微软Kinect V2相机,自80 cm高度垂直位姿获取绿萝叶片局部点云,并进行直通滤波去噪... 为快速高效获取叶类植物叶片的外部表型参数、掌握植株生长状况,以绿萝叶片为研究对象,提出一种基于几何模型的叶长、叶宽与叶面积的三维估测方法。利用微软Kinect V2相机,自80 cm高度垂直位姿获取绿萝叶片局部点云,并进行直通滤波去噪与包围盒精简等预处理,测量得到点云外形参数,输入预先建立的SAE网络分类预测得到几何模型参数,并基于曲面参数方程建立叶片几何模型。采用粒子群优化算法计算几何模型离散点云和局部点云间的空间距离,进行空间匹配,利用遗传算法求解最优匹配模型的内部模型参数,输出最优匹配模型的叶长、叶宽与叶面积作为估测结果。实验共采集150片绿萝叶片的局部点云数据,将估测结果和真实值进行数学统计与线性回归分析,得出叶长、叶宽与叶面积估测的平均误差分别为0.46 cm、0.41 cm和3.42 cm^2,叶长估测R^2和RMSE分别为0.88和0.52 cm,叶宽R^2和RMSE分别为0.88和0.52 cm,叶面积R^2和RMSE分别为0.95和3.60 cm^2。实验表明,该方法对于绿萝叶片外形参数的估测效果较好,具有较高实用价值。 展开更多
关键词 绿萝叶片 表型参数 三维点云 几何模型
在线阅读 下载PDF
基于Pointnet和迁移学习的苹果表型参数估算研究 被引量:5
19
作者 陈龙 王浩云 +2 位作者 季呈明 孙云晓 徐焕良 《南京农业大学学报》 CAS CSCD 北大核心 2021年第6期1209-1216,共8页
[目的]为快速、准确、无损检测苹果的外部表型参数,提出了一种基于Pointnet和迁移学习的苹果表型参数估算算法。[方法]通过Kinect相机从任意角度拍摄苹果并使用直通滤波法去除背景环境数据得到只包含苹果信息的点云数据。在此基础上使... [目的]为快速、准确、无损检测苹果的外部表型参数,提出了一种基于Pointnet和迁移学习的苹果表型参数估算算法。[方法]通过Kinect相机从任意角度拍摄苹果并使用直通滤波法去除背景环境数据得到只包含苹果信息的点云数据。在此基础上使用最远点采样法,获取标准输入点云,然后采用椭球曲面方程构建苹果几何模型,生成基于椭圆方程的苹果几何模型库。使用Pointnet算法训练仿真模型数据,然后通过迁移学习迁移到实测数据上去,在训练好的模型上进行微调;再经过5-折交叉验证,判定模型的鲁棒性和泛化能力,得到最终的估算模型。[结果]以均方根误差(RMSE)和决定系数(R2)评价模型结果,实测250个苹果3个角度点云共750组数据,在任意一个角度拍摄的残缺率达到50%的点云数据的条件下,该模型对苹果的直径、高度、体积3组表型参数的RMSE分别为2.247、2.275和22.780,R2分别为0.919、0.841和0.927。[结论]该算法回归效果优于传统算法,在任意角度拍摄到的残缺率达到50%的点云数据的条件下仍能很好完成外部表型参数估算。 展开更多
关键词 Pointnet 迁移学习 苹果 表型参数 点云
在线阅读 下载PDF
油菜角果数量及关键表型参数的自动化检测方法研究 被引量:5
20
作者 刘仁峰 黄诗瑶 +1 位作者 聂勇鹏 徐胜勇 《中国油料作物学报》 CAS CSCD 北大核心 2020年第1期71-77,共7页
为有效替代人工方式考种油菜、观测角果,研究了一种用于测量批量角果的数量和关键表型参数的自动化检测方法。设计了角果散铺和图像采集装置,利用拨动加振动的方式将堆积角果均匀散开并拍摄视频;使用二维码作为标记块,以有效地提取关键... 为有效替代人工方式考种油菜、观测角果,研究了一种用于测量批量角果的数量和关键表型参数的自动化检测方法。设计了角果散铺和图像采集装置,利用拨动加振动的方式将堆积角果均匀散开并拍摄视频;使用二维码作为标记块,以有效地提取关键帧并拼接为包含全部角果的整幅图像;提出了基于凹点提取与匹配的图像分割方法,分割各种形态下的重叠角果,准确率达到98%以上。在关键表型参数测量中,利用了最大类间方差法以判断角果的正置或侧置姿态,以此估计角果横切面的近似椭圆长短轴,再计算角果的长度、表面积和体积。实验结果表明该方法具有很好的检测精度,对不同品种的油菜适应性较好,长度、表面积和体积的估计误差分别不大于2.9%、4.8%和5.0%。该方法可以有效替代人工方式的油菜考种,为相关农业科研领域提供基础数据。 展开更多
关键词 油菜角果 数量检测 表型参数 图像处理
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部