针对菇房内杏鲍菇表型参数测量任务中,由于扫描设备视角受限,扫描的杏鲍菇点云出现残缺问题,基于AdaPoinTr(Adaptive geometry-aware point transformers)提出了改进的SwinPoinTr模型,实现了对残缺杏鲍菇点云的准确补全和杏鲍菇表型参...针对菇房内杏鲍菇表型参数测量任务中,由于扫描设备视角受限,扫描的杏鲍菇点云出现残缺问题,基于AdaPoinTr(Adaptive geometry-aware point transformers)提出了改进的SwinPoinTr模型,实现了对残缺杏鲍菇点云的准确补全和杏鲍菇表型参数的测量。该方法在使用提出的特征重塑模块的基础上,构建具有几何感知能力的层次化Transformer编码模块,提高了模型对输入点云的利用率和模型捕捉点云细节特征的能力。然后基于泊松重建方法完成了补全点云表面重建,并测量到杏鲍菇表型参数。实验结果表明,本文所提算法在残缺杏鲍菇点云补全任务中,模型倒角距离为1.316×10^(-4),地球移动距离为21.3282,F1分数为87.87%。在表型参数估测任务中,模型对杏鲍菇菌高、体积、表面积估测结果的决定系数分别为0.9582、0.9596、0.9605,均方根误差分别为4.4213 mm、10.8185 cm^(3)、7.5778 cm^(2)。结果证实了该研究方法可以有效地补全残缺的杏鲍菇点云,可以为菇房内杏鲍菇表型参数测量提供基础。展开更多
苗期作物三维结构的精准高效重建是获取表型信息的重要基础。传统的三维重建大多基于运动恢复结构-多视图立体视觉(Structure from motion and multi-view stereo,SFM-MVS)算法,计算成本高,难以满足快速获取表型参数的需求。本研究提出...苗期作物三维结构的精准高效重建是获取表型信息的重要基础。传统的三维重建大多基于运动恢复结构-多视图立体视觉(Structure from motion and multi-view stereo,SFM-MVS)算法,计算成本高,难以满足快速获取表型参数的需求。本研究提出一种基于神经辐射场(Neural radiance fields,NeRF)的苗期作物三维建模和表型参数获取系统,利用手机获取不同视角下的RGB影像,通过NeRF算法完成三维模型的构建。在此基础上,利用点云库(Point cloud library,PCL)中的直线拟合和区域生长等算法自动分割植株,并采用距离最值遍历、圆拟合和三角面片化等算法实现了精准测量植株的株高、茎粗和叶面积等表型参数。为评估该方法的重建效率和表型参数测量精度,本研究分别选取辣椒、番茄、草莓和绿萝的苗期植株作为试验对象,对比NeRF算法与SFM-MVS算法的重建结果。结果表明,以SFM-MVS方法重建点云为基准,NeRF方法重建的各植株点云点对距离均方根误差仅为0.128~0.395 cm,两者重建质量较接近,但在重建速度方面,本文研究方法相比于SFM-MVS方法平均重建速度提高700%。此外,该方法提取辣椒苗株高、茎粗决定系数(R^(2))分别为0.971和0.907,均方根误差(RMSE)分别为0.86 cm和0.017 cm,对各苗期植株叶面积提取的R^(2)为0.909~0.935,RMSE为0.75~3.22 cm^(2),具有较高的测量精度。本研究提出的方法可以显著提高三维重建和表型参数获取效率,从而为作物育种选苗提供更为高效的技术手段。展开更多