期刊文献+
共找到164篇文章
< 1 2 9 >
每页显示 20 50 100
补偿递归模糊神经网络及在热工建模中的应用 被引量:3
1
作者 吴波 吴科 +1 位作者 吕剑虹 向文国 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第4期668-673,共6页
在传统的模糊神经网络中引入递归环节和补偿环节,构成了一种新型补偿递归模糊神经网络(CRFNN),改善了网络的动态响应特性和学习能力.在此基础上,采用一种新型序贯监督策略对网络进行结构辨识,能够有效地确定模糊规则的条数以及相关参数... 在传统的模糊神经网络中引入递归环节和补偿环节,构成了一种新型补偿递归模糊神经网络(CRFNN),改善了网络的动态响应特性和学习能力.在此基础上,采用一种新型序贯监督策略对网络进行结构辨识,能够有效地确定模糊规则的条数以及相关参数的初始值.针对CRFNN的结构特点,提出了改进的BP算法,能够对网络的结构参数进行进一步的学习.对典型的热工对象以及复杂的ALSTOM气化炉进行的建模计算结果表明,提出的CRFNN具有优良的动态响应特性和很强的学习能力,值得在热工建模与控制领域中推广应用. 展开更多
关键词 补偿递归模糊神经网络 系统建模 序贯监督策略 改进BP算法 热工对象
在线阅读 下载PDF
基于模糊推理和Jordan神经网络的磁悬浮球位置补偿控制研究
2
作者 李孝茹 陈士松 黄之文 《上海理工大学学报》 北大核心 2025年第3期299-308,共10页
针对欠训练Jordan神经网络(Jordan neural network,JNN)输出不确定性导致的控制系统动态性能不佳的问题,提出了一种基于模糊推理(fuzzy inference,FI)和JNN的磁悬浮球位置补偿控制新方法,构建了包含基础控制、JNN控制和FI的三模块控制... 针对欠训练Jordan神经网络(Jordan neural network,JNN)输出不确定性导致的控制系统动态性能不佳的问题,提出了一种基于模糊推理(fuzzy inference,FI)和JNN的磁悬浮球位置补偿控制新方法,构建了包含基础控制、JNN控制和FI的三模块控制框架。基础控制模块采用适应性强的PID控制器;JNN控制模块实现磁悬浮球系统的在线辨识与补偿;FI模块动态调整神经网络控制器的输出,以抑制欠训练JNN带来的不确定性影响。实验结果表明,与传统神经网络补偿控制方法相比,在跟踪阶跃信号和方波信号时,超调量分别减小了39.79%和60.61%,调节时间分别减小了19.52%和48.47%。该方法在保证稳态精度的同时,显著提升了控制系统的动态性能。 展开更多
关键词 模糊推理 Jordan神经网络 位置补偿控制 磁悬浮球
在线阅读 下载PDF
基于递归模糊神经网络的感应电机无速度传感器矢量控制 被引量:53
3
作者 王耀南 王辉 +1 位作者 邱四海 黄守道 《中国电机工程学报》 EI CSCD 北大核心 2004年第5期84-89,共6页
该文提出了一种控制性能较好的递归模糊神经网络(RFNN)无速度传感器感应电机矢量控制方法,该方法使用模型参考自适应方法辨识转子磁场位置和转速,采用递归模糊神经网络控制器作为转矩控制器来近似系统最优控制器输出。仿真实验表明,当... 该文提出了一种控制性能较好的递归模糊神经网络(RFNN)无速度传感器感应电机矢量控制方法,该方法使用模型参考自适应方法辨识转子磁场位置和转速,采用递归模糊神经网络控制器作为转矩控制器来近似系统最优控制器输出。仿真实验表明,当系统参数动态变化或受到外部不确定性因素的影响时,利用神经网络来在线动态的调整网络的隶属函数参数以及神经网络递归权值,使系统仍将具有很好的动静态性能。 展开更多
关键词 感应电机 无速度传感器 矢量控制 归模糊神经网络 隶属函数 最优控制器
在线阅读 下载PDF
模糊神经网络理论在数控机床热误差补偿建模中的应用 被引量:20
4
作者 张宏韬 姜辉 杨建国 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第12期1950-1952,1961,共4页
应用模糊神经网络的学习性能,以一台数控机床的主轴径向热误差数据进行机床热误差建模和预报,并与常用的反向传播(BP)神经网络模型建模进行对比.结果表明,模糊神经网络模型对机床系统的热特性具有更强的学习能力,能对机床误差作出更为... 应用模糊神经网络的学习性能,以一台数控机床的主轴径向热误差数据进行机床热误差建模和预报,并与常用的反向传播(BP)神经网络模型建模进行对比.结果表明,模糊神经网络模型对机床系统的热特性具有更强的学习能力,能对机床误差作出更为精确的预报,进一步提高了误差补偿的效果. 展开更多
关键词 热误差 误差补偿 模糊神经网络 数控机床
在线阅读 下载PDF
一种递归模糊神经网络自适应控制方法 被引量:9
5
作者 毛六平 王耀南 +1 位作者 孙炜 戴瑜兴 《电子学报》 EI CAS CSCD 北大核心 2006年第12期2285-2287,共3页
构造了一种递归模糊神经网络(RFNN),该RFNN利用递归神经网络实现模糊推理,并通过在网络的第一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN分别用于对被... 构造了一种递归模糊神经网络(RFNN),该RFNN利用递归神经网络实现模糊推理,并通过在网络的第一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 展开更多
关键词 归模糊神经网络 自适应控制 交流伺服
在线阅读 下载PDF
基于动态递归模糊神经网络的自适应电液位置跟踪系统 被引量:15
6
作者 张友旺 桂卫华 赵泉明 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第4期551-556,共6页
提出了动态递归模糊神经网络(DRFNN)以在线估计电液位置跟踪系统中包括非线性、参数不确定性、负载干扰等在内的未知动态非线性函数,基于lyapunov稳定性理论推导出DRFNN可调参数和估计误差的界的自适应律,并构造出稳定的自适应控制器.... 提出了动态递归模糊神经网络(DRFNN)以在线估计电液位置跟踪系统中包括非线性、参数不确定性、负载干扰等在内的未知动态非线性函数,基于lyapunov稳定性理论推导出DRFNN可调参数和估计误差的界的自适应律,并构造出稳定的自适应控制器.实验结果表明:基于DRFNN的自适应控制器可使电液位置跟踪系统具有较强的鲁棒性和满意的跟踪性能. 展开更多
关键词 动态归模糊神经网络 电液位置跟踪系统 变结构控制 鲁棒性
在线阅读 下载PDF
基于动态递归模糊神经网络盲均衡算法的研究 被引量:8
7
作者 张朝霞 海振宏 王华奎 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第2期539-541,共3页
模糊系统和神经网络已广泛应用于系统的辨识和控制,但是传统的模糊神经网络是一种静态映射,不适用于动态系统的辨识;而由于无线通信信道的时变性和不确定性,决定了盲均衡器本身就是一个动态的均衡过程,所以研究利用动态递归模糊神经网... 模糊系统和神经网络已广泛应用于系统的辨识和控制,但是传统的模糊神经网络是一种静态映射,不适用于动态系统的辨识;而由于无线通信信道的时变性和不确定性,决定了盲均衡器本身就是一个动态的均衡过程,所以研究利用动态递归模糊神经网络的盲均衡算法是可行的,而且也是必要的。仿真结果表明:由于动态模糊神经网络的均衡过程同时利用了系统的当前数据和历史数据,对动态系统的均衡,较传统神经网络在均衡的精度和稳定性方面具有更好的效果。 展开更多
关键词 动态递归 模糊神经网络 盲均衡 隶属函数
在线阅读 下载PDF
自组织递归区间二型模糊神经网络在动态时变系统辨识中的应用 被引量:9
8
作者 李迪 陈向坚 +2 位作者 续志军 杨帆 牛文达 《光学精密工程》 EI CAS CSCD 北大核心 2011年第6期1406-1413,共8页
针对动态时变系统辨识过程中存在噪声干扰的问题,本文将区间二型模糊集结合到递归神经网络中,提出了自组织递归区间二型模糊神经网络以增强动态时变系统的抗噪能力。该自组织递归区间二型模糊神经网络由前件和后件两部分构成:前件为区... 针对动态时变系统辨识过程中存在噪声干扰的问题,本文将区间二型模糊集结合到递归神经网络中,提出了自组织递归区间二型模糊神经网络以增强动态时变系统的抗噪能力。该自组织递归区间二型模糊神经网络由前件和后件两部分构成:前件为区间二型模糊集模型,用于将每个规则的激活强度反馈到自身构成内反馈回路,其参数学习采用梯度下降算法;后件为带有区间权值的Takagi-Sugeno-Kang(TSK)模型,其参数学习采用有序规则卡尔曼滤波算法,且网络初始规则数为零。所有规则均通过结构学习和前后件参数同时在线学习来产生,其网络结构学习采用的是在线区间二型模糊群集。为验证提出的神经网络的优越性,将其应用到单输入单输出动态时变系统的辨识中。实验结果表明,相对于前馈一型/二型模糊神经网络、递归一型模糊神经网络,该神经网络的辨识能力强,即使在存在白噪声的条件下,也能减小测试及训练误差。 展开更多
关键词 自组织递归区间 二型模糊神经网络 卡尔曼滤波 梯度下降法 噪声干扰 动态时变系统辨识
在线阅读 下载PDF
基于RBF神经网络集成-模糊加权输出的数字温度传感器误差补偿 被引量:20
9
作者 林海军 滕召胜 +1 位作者 杨进宝 刘让周 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第7期1675-1680,共6页
数字温度传感器存在非线性误差,在高精度测温系统中需要进行误差补偿。提出了一种基于径向基函数神经网络集成-模糊加权输出(RBFNNE-FWO)的数字温度传感器误差补偿方法:首先根据数字温度传感器的误差特征,提取特征阈值,构造三个相互独... 数字温度传感器存在非线性误差,在高精度测温系统中需要进行误差补偿。提出了一种基于径向基函数神经网络集成-模糊加权输出(RBFNNE-FWO)的数字温度传感器误差补偿方法:首先根据数字温度传感器的误差特征,提取特征阈值,构造三个相互独立的成员RBFNN;考虑到成员网络之间边界误差补偿问题,构建一种RBFNN集成输出权值模糊调节器,获得RBFNN集成输出权值,从而完成数字温度传感器的全量程误差补偿。与多种方法的比较仿真实验表明,这种RBFNNE-FWO方法的性能最佳、各成员网络边界误差最小,补偿后的数字温度传感器误差减少了两个数量级,大大提高了测温准确度。 展开更多
关键词 数字温度传感器 误差补偿 径向基函数神经网络集成-模糊加权输出 边界误差
在线阅读 下载PDF
基于模糊神经网络的轮廓误差附加补偿控制研究 被引量:5
10
作者 肖本贤 郭福权 +2 位作者 王群京 昂卫兵 娄天玲 《系统仿真学报》 CAS CSCD 2003年第12期1733-1736,共4页
在分析系统轮廓误差的基础上,提出了基于模糊神经网络的轮廓误差补偿方法,并说明其补偿器的原理、算法及实现。该法在不改变系统各单轴位置环的前提下,根据系统的轮廓误差,通过模糊神经网络的自学习能力动态向各轴提供误差补偿信息,进... 在分析系统轮廓误差的基础上,提出了基于模糊神经网络的轮廓误差补偿方法,并说明其补偿器的原理、算法及实现。该法在不改变系统各单轴位置环的前提下,根据系统的轮廓误差,通过模糊神经网络的自学习能力动态向各轴提供误差补偿信息,进而提高系统的轮廓精度,同时也解决了各轴之间增益不匹配、动态不匹配和各轴不可预见性问题。最后,在MATLAB6.1环境下对该系统进行仿真,仿真结果表明其可行性和有效性。 展开更多
关键词 轮廓误差 模糊神经网络 动态分配 补偿
在线阅读 下载PDF
基于补偿模糊神经网络的灰循环系统控制研究 被引量:6
11
作者 高明明 刘吉臻 +3 位作者 高明帅 杨世明 吴玉平 张明胜 《动力工程学报》 CAS CSCD 北大核心 2012年第7期532-537,共6页
针对循环系统回料量对循环流化床锅炉床温的影响,采用补偿模糊神经网络的建模方法,建立灰循环系统回料控制模型,选取锅炉床温变化及变化率作为输入、回料风量作为输出进行了仿真研究,并与常规控制进行比较.结果表明:补偿模糊神经网络控... 针对循环系统回料量对循环流化床锅炉床温的影响,采用补偿模糊神经网络的建模方法,建立灰循环系统回料控制模型,选取锅炉床温变化及变化率作为输入、回料风量作为输出进行了仿真研究,并与常规控制进行比较.结果表明:补偿模糊神经网络控制器对参数变化的适应性明显优于常规控制器,补偿模糊神经网络方法对灰循环系统控制优化有实际意义. 展开更多
关键词 循环流化床 灰循环系统 回料量 补偿模糊神经网络
在线阅读 下载PDF
基于模糊RBF神经网络动态摩擦分块补偿的机器人数字鲁棒滑模控制算法 被引量:8
12
作者 李敏 王家序 +2 位作者 肖科 黄超 徐超 《中国机械工程》 EI CAS CSCD 北大核心 2012年第23期2792-2796,共5页
结合非线性、强耦合的机器人动力学模型,提出了采用3个模糊RBF神经网络对机器人中的不确定项——LuGre动态摩擦进行分块补偿的机器人数字鲁棒滑模控制算法,在线自适应训练非线性动态摩擦项的参数,并分析了该算法的Lyapunov稳定性。通过... 结合非线性、强耦合的机器人动力学模型,提出了采用3个模糊RBF神经网络对机器人中的不确定项——LuGre动态摩擦进行分块补偿的机器人数字鲁棒滑模控制算法,在线自适应训练非线性动态摩擦项的参数,并分析了该算法的Lyapunov稳定性。通过在二自由度机器人上的仿真,证明了该算法具有高精度、高可靠性、高品质、稳定、强鲁棒性等特点。同时发现了该机器人的摩擦模型中存在类菱形吸引子等非线性动力学现象。 展开更多
关键词 模糊RBF神经网络 摩擦补偿 LuGre摩擦模型 不确定性 机器人数字控制
在线阅读 下载PDF
神经网络结构的递归T-S模糊模型 被引量:10
13
作者 李翔 陈增强 袁著祉 《系统工程学报》 CSCD 2001年第4期268-274,共7页
提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建... 提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建模方面 TSFRNN比 TSFNN更加优越 . 展开更多
关键词 递归神经网络 T-S模糊模型 非线性系统 建模 学习算法
在线阅读 下载PDF
基于递归模糊神经网络的机器人鲁棒H_∞跟踪控制 被引量:8
14
作者 彭金柱 王耀南 王杰 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第9期1145-1151,共7页
利用递归模糊神经网络来逼近机器人系统中的非线性函数,提出了一种具有自适应能力的H∞控制策略.该控制策略能够减弱机器人系统的外扰,并把模糊神经网络的重构误差对系统的影响控制在指定的范围内.同时又能保证闭环系统的所有信号都是... 利用递归模糊神经网络来逼近机器人系统中的非线性函数,提出了一种具有自适应能力的H∞控制策略.该控制策略能够减弱机器人系统的外扰,并把模糊神经网络的重构误差对系统的影响控制在指定的范围内.同时又能保证闭环系统的所有信号都是有界的.为了验证基于递归模糊神经网络的H∞控制策略的有效性,将其与计算力矩控制方法进行比较,仿真结果表明,在存在外扰的情况下,所提出的控制策略具有比计算力矩控制方法更好的跟踪性能. 展开更多
关键词 归模糊神经网络 机器人系统 鲁棒H∞控制 跟踪控制
在线阅读 下载PDF
二级倒立摆的递阶模糊神经网络控制 被引量:10
15
作者 杨振强 程树康 朴营国 《电机与控制学报》 EI CSCD 北大核心 2002年第3期245-248,共4页
为了表明模糊神经网络控制器比较适合于控制快速、多变量、强非线性、绝对不稳定系统,可以克服用模糊神经网络控制多变量系统时的规则组合爆炸问题,本文提出用递阶模糊神经网络控制二级倒立摆。这种方法可以有效地减少多变量输入的模糊... 为了表明模糊神经网络控制器比较适合于控制快速、多变量、强非线性、绝对不稳定系统,可以克服用模糊神经网络控制多变量系统时的规则组合爆炸问题,本文提出用递阶模糊神经网络控制二级倒立摆。这种方法可以有效地减少多变量输入的模糊神经网络控制器的规则数,有利于利用专家的控制经验初始化网络参数,从而有利于下一步利用遗传算法对其进行优化。实验结果表明:与线性最优控制相比,本文方法的控制效果好、鲁棒性强。 展开更多
关键词 二级倒立摆 模糊神经网络 遗传算法 模糊控制
在线阅读 下载PDF
递阶遗传算法优化的模糊神经网络的故障诊断应用 被引量:5
16
作者 宋乃慧 任朝晖 闻邦椿 《农业机械学报》 EI CAS CSCD 北大核心 2007年第12期129-132,共4页
提出一种利用递阶结构的混合编码遗传算法与进化规划相结合优化模糊神经网络学习的新算法,利用该算法同时优化模糊神经网络的结构和参数,剔除网络的冗余接点和冗余连接,提高网络的处理能力。分析和实验结果表明,所构建的机械故障诊断模... 提出一种利用递阶结构的混合编码遗传算法与进化规划相结合优化模糊神经网络学习的新算法,利用该算法同时优化模糊神经网络的结构和参数,剔除网络的冗余接点和冗余连接,提高网络的处理能力。分析和实验结果表明,所构建的机械故障诊断模糊神经网络结构简洁,而且具有良好的诊断效果。 展开更多
关键词 故障诊断 模糊神经网络 阶遗传算法 进化规划
在线阅读 下载PDF
混合动力汽车补偿模糊神经网络能量管理策略 被引量:7
17
作者 陈慧勇 吴光强 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期525-530,共6页
以上海大众汽车公司某型号混合动力电动汽车(HEV)的设计要求为基础,提出了一种基于补偿模糊神经网络的能量控制策略,并采用动态调整步长的梯度下降法加快算法的收敛速度.分析了样本数据选取、输入、输出模糊分割和模糊规则提取对控制器... 以上海大众汽车公司某型号混合动力电动汽车(HEV)的设计要求为基础,提出了一种基于补偿模糊神经网络的能量控制策略,并采用动态调整步长的梯度下降法加快算法的收敛速度.分析了样本数据选取、输入、输出模糊分割和模糊规则提取对控制器性能的影响.利用ADVISOR2002仿真平台进行二次开发,完成了基于补偿模糊神经网络的控制策略、并联电力辅助控制策略和模糊控制策略的仿真比较.仿真结果表明,基于补偿模糊神经网络的控制器具有较强的自适应能力,可以较好提高混合动力汽车的燃油经济性和排放性. 展开更多
关键词 混合动力汽车 能量管理 模糊控制 补偿模糊神经网络
在线阅读 下载PDF
基于补偿模糊神经网络和线性模型的短期电力负荷预测 被引量:3
18
作者 耿伟华 孙衢 李兴源 《电网技术》 EI CSCD 北大核心 2006年第23期1-5,共5页
在考虑了气象因素对负荷的影响的基础上,提出了一种补偿模糊神经网络和线性模型相结合的短期电力负荷预测新方法。首先采用补偿模糊神经网络求出峰、谷负荷,然后利用线性外推法求出未来1日中24个时刻的负荷值。该方法具有神经网络和线... 在考虑了气象因素对负荷的影响的基础上,提出了一种补偿模糊神经网络和线性模型相结合的短期电力负荷预测新方法。首先采用补偿模糊神经网络求出峰、谷负荷,然后利用线性外推法求出未来1日中24个时刻的负荷值。该方法具有神经网络和线性模型的优点,实例仿真结果表明其具有较快的收敛速度、较高的预测精度和较强的鲁棒性。 展开更多
关键词 短期负荷预测 补偿模糊神经网络 模糊神经网络 隶属函数 线性外推法
在线阅读 下载PDF
模糊神经网络在电网综合补偿器设计中的应用 被引量:2
19
作者 秦华标 林土胜 +2 位作者 赖声礼 徐向民 胡鲜 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2000年第3期115-120,共6页
根据电网综合补偿器多输入多输出 (MIMO)及非线性的特点 ,提出了一种基于模糊神经网络的设计方法 ,并首次采用该方法对电网综合补偿器的控制规则和设备参数进行了设计 .
关键词 综合补偿 模糊神经网络 电力网 设计
在线阅读 下载PDF
补偿模糊神经网络水果形状分级器分级误差 被引量:8
20
作者 曹乐平 温芝元 《农业工程学报》 EI CAS CSCD 北大核心 2008年第12期102-106,共5页
针对神经网络对水果进行分级时精度有待提高的问题,分析了补偿模糊神经网络椪柑形状分级器的分级误差。将椪柑图像前4个傅里叶描述子按期望输出模糊变量值大小排列成单调递增、单调递减、钟形分布和锯齿形分布4种训练样本,分别训练同一... 针对神经网络对水果进行分级时精度有待提高的问题,分析了补偿模糊神经网络椪柑形状分级器的分级误差。将椪柑图像前4个傅里叶描述子按期望输出模糊变量值大小排列成单调递增、单调递减、钟形分布和锯齿形分布4种训练样本,分别训练同一补偿模糊神经网络水果形状分级器,用递减排序后的同一测试样本检验分级器性能,试验表明,单调递减顺序训练样本所训练的分级器分级误差最小为1.875%,钟形分布、单调递增顺序和锯齿形分布训练样本所训练的分级器分级误差依次增大,分别为15%、63.125%、75%。分析分级误差与样本间顺序的对应关系,建立分级误差模型,结果表明,同顺序的测试样本与训练样本间相关系数大,分级误差小;不同顺序的测试样本与训练样本间相关系数小,分级误差大。因此,测试样本与训练样本按水果同一品质特征同序排列,提高样本间的相关程度,将大幅度降低神经网络类分级器分级误差,提高正确识别率。 展开更多
关键词 补偿模糊神经网络 离散傅里叶变换 谐波分量 水果形状 分级误差
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部