期刊文献+
共找到1,091篇文章
< 1 2 55 >
每页显示 20 50 100
基于模糊神经网络-粒子群优化算法的电机直驱操动机构速度环控制参数优化方法
1
作者 黎卫国 马丽娟 +4 位作者 张长虹 杨旭 李明洋 肖曦 王潇 《电气工程学报》 北大核心 2025年第3期20-27,共8页
电机直驱操动机构作为一种融合电力电子器件与永磁同步电机的新型操动机构,具备传动结构简单、控制柔性高、数字化能力强等优势。针对在实际运行工况中,电机直驱操动机构负载的变化导致速度环性能下降的问题,提出一种基于模糊神经网络(F... 电机直驱操动机构作为一种融合电力电子器件与永磁同步电机的新型操动机构,具备传动结构简单、控制柔性高、数字化能力强等优势。针对在实际运行工况中,电机直驱操动机构负载的变化导致速度环性能下降的问题,提出一种基于模糊神经网络(Fuzzy neural network,FNN)-粒子群优化(Particle swarm optimization,PSO)算法的电机直驱操动机构速度环控制参数优化方法,标准PSO算法用于优化电机直驱操动机构中永磁同步电机(Permanent magnet synchronous motor,PMSM)控制系统的速度环PI(Proportional integral,PI)参数,而FNN算法用于优化PSO算法中的惯性权重。首先,建立PMSM数学模型,并分析速度环PI控制器参数设计方法;其次,基于标准PSO算法对电机直驱操动机构中PMSM控制系统速度环PI控制器参数优化进行分析;随后,结合FNN算法对标准PSO算法中的惯性权重进行优化;最终,通过试验验证了所提方法的有效性。试验结果表明,该方法能够提高电机直驱操动机构控制系统速度环性能,为电机直驱操动机构在面对系统惯量变化时的控制性能提升提供了一种有效的解决方案。 展开更多
关键词 高压断路器 操动机构 模糊神经网络 粒子群算法
在线阅读 下载PDF
基于模糊推理和Jordan神经网络的磁悬浮球位置补偿控制研究
2
作者 李孝茹 陈士松 黄之文 《上海理工大学学报》 北大核心 2025年第3期299-308,共10页
针对欠训练Jordan神经网络(Jordan neural network,JNN)输出不确定性导致的控制系统动态性能不佳的问题,提出了一种基于模糊推理(fuzzy inference,FI)和JNN的磁悬浮球位置补偿控制新方法,构建了包含基础控制、JNN控制和FI的三模块控制... 针对欠训练Jordan神经网络(Jordan neural network,JNN)输出不确定性导致的控制系统动态性能不佳的问题,提出了一种基于模糊推理(fuzzy inference,FI)和JNN的磁悬浮球位置补偿控制新方法,构建了包含基础控制、JNN控制和FI的三模块控制框架。基础控制模块采用适应性强的PID控制器;JNN控制模块实现磁悬浮球系统的在线辨识与补偿;FI模块动态调整神经网络控制器的输出,以抑制欠训练JNN带来的不确定性影响。实验结果表明,与传统神经网络补偿控制方法相比,在跟踪阶跃信号和方波信号时,超调量分别减小了39.79%和60.61%,调节时间分别减小了19.52%和48.47%。该方法在保证稳态精度的同时,显著提升了控制系统的动态性能。 展开更多
关键词 模糊推理 Jordan神经网络 位置补偿控制 磁悬浮球
在线阅读 下载PDF
基于RBF神经网络的4-PPPS并联机构位姿误差补偿
3
作者 金奕扬 李磊 +3 位作者 许家伟 汪建华 王国伟 许润康 《现代制造工程》 北大核心 2025年第4期140-150,共11页
为了解决船舶调姿机构结构误差引起的船舶总段对接精度下降问题,以4-PPPS并联机构为研究对象,首先采用闭环矢量法建立包含32个误差项的动平台位姿误差模型,然后具体分析其中便于测量的16种结构误差参数对动平台位姿精度的影响规律。误... 为了解决船舶调姿机构结构误差引起的船舶总段对接精度下降问题,以4-PPPS并联机构为研究对象,首先采用闭环矢量法建立包含32个误差项的动平台位姿误差模型,然后具体分析其中便于测量的16种结构误差参数对动平台位姿精度的影响规律。误差分析结果表明,沿轨道方向移动副长度误差对4-PPPS并联机构运动精度影响最大,在4条支链均存在误差的情况下,Z轴方向动平台位姿误差达到1.5 mm。同时,为克服传统误差参数辨识难度较大的问题,提出一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化径向基函数(Radial Basis Function,RBF)神经网络的补偿方法。该方法将位姿误差转化为驱动关节长度误差,通过神经网络建立动平台理论位姿与驱动关节长度误差的预测模型,并采用鲸鱼优化算法优化网络参数,最终获得驱动关节长度补偿量,用来修正动平台的实际位姿并完成误差补偿。经过仿真验证,该方法能够有效提升4-PPPS并联机构的运动精度,动平台在X、Y、Z轴方向的误差均值分别由0.169、0.188、0.159 mm降至0.002、0.001、0.003 mm,误差最大值分别由0.208、0.231、0.195 mm降至0.012、0.001、0.019 mm,平均位姿精度提高了85.07%,补偿效果显著。 展开更多
关键词 并联机构 误差分析 误差补偿 RBF神经网络 鲸鱼优化算法
在线阅读 下载PDF
基于C-I-WOA-BP神经网络的钻压温度补偿方法
4
作者 武丹 张星 +2 位作者 王飞 仵磊 高国旺 《西安石油大学学报(自然科学版)》 北大核心 2025年第4期90-97,共8页
为了提高小井眼随钻参数测量中钻压测量的准确性,补偿温度对应变片的影响,克服传统BP神经网络学习过程收敛速度慢、对初始值和偏置值敏感、学习率不稳定、容易陷入局部最小值的缺陷,提出一种混沌映射的自适应鲸鱼优化算法优化BP神经网络... 为了提高小井眼随钻参数测量中钻压测量的准确性,补偿温度对应变片的影响,克服传统BP神经网络学习过程收敛速度慢、对初始值和偏置值敏感、学习率不稳定、容易陷入局部最小值的缺陷,提出一种混沌映射的自适应鲸鱼优化算法优化BP神经网络的C-I-WOA-BP温度补偿模型。首先,采用混沌映射的方法优化传统鲸鱼算法(WOA)的初始种群方式;然后通过自适应权重调整优化WOA的收缩包围机制;再通过WOA算法优化BP神经网络的权重系数;最后,综合对比BP网络、CWOABP网络、IWOABP网络和C-I-WOA-BP网络的性能。结果表明,C-I-WOA-BP网络提高算法收敛速度,具有全局探索能力和局部开发能力,稳定性好,能有效降低温度对钻压参数测量的影响。 展开更多
关键词 BP神经网络 温度补偿 混沌映射 鲸鱼算法 自适应权重
在线阅读 下载PDF
基于WOA-BP神经网络的热式流量测量技术研究
5
作者 刘升虎 刘太逸 +3 位作者 冉建立 郭会强 邢亚敏 梁钊睿 《仪表技术与传感器》 北大核心 2025年第4期50-54,共5页
针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的... 针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的补偿模型,提高了算法的收敛速度。实验结果表明:优化后的神经网络模型在热式流量测量方法中具有较好的流量预测效果,WOA-BP网络模型R~2达到0.989,比传统BP模型的预测精确性和鲁棒性更高,在对油井产液量预测方面具有实用价值。 展开更多
关键词 鲸鱼优化算法(WOA) BP神经网络 热式流量测量方法 温度补偿
在线阅读 下载PDF
基于改进RBF神经网络的永磁同步电机弱磁控制 被引量:1
6
作者 于丰铭 刘军 《组合机床与自动化加工技术》 北大核心 2025年第1期99-103,共5页
针对永磁同步电机在传统单电流调节器弱磁控制下,电机控制模式切换时导致的系统稳定性差,以及传统RBF-PID控制器输出权值的非精细化更新导致的参数过拟合,收敛速度慢等问题,提出一种过渡区域切换算法,引入混合权重因子,采用余弦插值与Si... 针对永磁同步电机在传统单电流调节器弱磁控制下,电机控制模式切换时导致的系统稳定性差,以及传统RBF-PID控制器输出权值的非精细化更新导致的参数过拟合,收敛速度慢等问题,提出一种过渡区域切换算法,引入混合权重因子,采用余弦插值与Sigmoid函数做过渡区域的平滑处理,并在弱磁区引入模糊PI控制器,将自适应梯度下降法与L2正则化策略结合,改进神经网络的输出权值。仿真结果表明,设计的过渡区域切换算法,不依赖电机参数,可移植性强,优化了恒转矩区切换至弱磁区的条件,在改进RBF-PID控制器下,转速超调量仅为0.07%,负载调节时间较之传统策略减少了94%。 展开更多
关键词 永磁同步电机 弱磁控制 过渡区域切换算法 RBF神经网络 模糊控制
在线阅读 下载PDF
基于模糊RBF神经网络动态摩擦分块补偿的机器人数字鲁棒滑模控制算法 被引量:8
7
作者 李敏 王家序 +2 位作者 肖科 黄超 徐超 《中国机械工程》 EI CAS CSCD 北大核心 2012年第23期2792-2796,共5页
结合非线性、强耦合的机器人动力学模型,提出了采用3个模糊RBF神经网络对机器人中的不确定项——LuGre动态摩擦进行分块补偿的机器人数字鲁棒滑模控制算法,在线自适应训练非线性动态摩擦项的参数,并分析了该算法的Lyapunov稳定性。通过... 结合非线性、强耦合的机器人动力学模型,提出了采用3个模糊RBF神经网络对机器人中的不确定项——LuGre动态摩擦进行分块补偿的机器人数字鲁棒滑模控制算法,在线自适应训练非线性动态摩擦项的参数,并分析了该算法的Lyapunov稳定性。通过在二自由度机器人上的仿真,证明了该算法具有高精度、高可靠性、高品质、稳定、强鲁棒性等特点。同时发现了该机器人的摩擦模型中存在类菱形吸引子等非线性动力学现象。 展开更多
关键词 模糊RBF神经网络 摩擦补偿 LuGre摩擦模型 不确定性 机器人数字控制
在线阅读 下载PDF
基于模糊补偿的神经网络算法在调速系统中的应用
8
作者 钱坤 谢寿生 +1 位作者 张伟 于东军 《电机与控制学报》 EI CSCD 北大核心 2004年第4期373-376,381,共5页
提出了一种带模糊补偿的神经网络算法并应用在异步电机速度控制系统中,一个动态神经网络用于被控装置的在线辨识,然后根据被控装置的输出和参考模型的响应迭代出控制信号,具有四条简单规则的模糊逻辑块用于提高整个系统的闭环特性。仿... 提出了一种带模糊补偿的神经网络算法并应用在异步电机速度控制系统中,一个动态神经网络用于被控装置的在线辨识,然后根据被控装置的输出和参考模型的响应迭代出控制信号,具有四条简单规则的模糊逻辑块用于提高整个系统的闭环特性。仿真结果显示,对比传统的最优PID控制器,本文提出的控制策略具有更好的瞬变特性及抗干扰特性。 展开更多
关键词 异步电机 速度控制系统 调速系统 模糊补偿 神经网络算法
在线阅读 下载PDF
基于聚类和文化算法的补偿模糊神经网络建模方法
9
作者 黄海燕 刘漫丹 顾幸生 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期302-307,共6页
根据补偿模糊神经网络的建模特点,提出了基于聚类和文化算法的补偿模糊神经网络建模方法。该网络的学习分为两步:结构辨识和参数辨识。在结构辨识中,采用改进的聚类算法确定模糊规则数及初始参数,构造一个初始模糊模型;在参数辨识中,采... 根据补偿模糊神经网络的建模特点,提出了基于聚类和文化算法的补偿模糊神经网络建模方法。该网络的学习分为两步:结构辨识和参数辨识。在结构辨识中,采用改进的聚类算法确定模糊规则数及初始参数,构造一个初始模糊模型;在参数辨识中,采用基于多层信念空间的文化算法对具有5层结构的补偿模糊神经网络参数进一步优化,使其具有更高的精度。通过对TE过程的故障诊断建模,结果表明该网络在建模精度和收敛速度上均优于常规补偿模糊神经网络和常规模糊神经网络。 展开更多
关键词 补偿模糊神经网络(CFNN) 聚类方法 文化算法
在线阅读 下载PDF
基于有效性分析的自组织模糊神经网络建模方法 被引量:1
10
作者 王雪峰 李文静 乔俊飞 《控制工程》 CSCD 北大核心 2024年第3期463-469,共7页
提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络... 提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络模型的有效性分析,通过累积触发的方式实现相应模糊规则的增加或删减,使网络模型在能够处理复杂非线性问题的同时降低其冗余性,使模型更为紧凑。采用梯度下降算法对网络模型进行训练。然后,对所提出的SOEFNN模型进行非线性系统仿真实验和污水处理过程中的出水生化需氧量预测建模,并与其他自组织模糊神经网络模型进行对比。仿真结果表明,所提出的SOEFNN模型能够很好地实现结构和参数的自适应调整,并且具有较好的逼近能力。 展开更多
关键词 有效性分析 自组织模糊神经网络 梯度下降算法 网络建模
在线阅读 下载PDF
基于深度模糊神经网络的太阳总辐射预测研究 被引量:3
11
作者 乔楠 蒋波涛 +2 位作者 郑雨 刘燕东 王锦 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期59-64,共6页
提出一种基于深度模糊神经网络的太阳总辐射预测模型。首先利用Pearson相关系数分析太阳总辐射关键影响因素,其次利用深度学习多隐含层所具有的特征提取优势将模糊神经网络模块重复连接,构建深度模糊神经网络模型,并使用蝗虫优化算法对... 提出一种基于深度模糊神经网络的太阳总辐射预测模型。首先利用Pearson相关系数分析太阳总辐射关键影响因素,其次利用深度学习多隐含层所具有的特征提取优势将模糊神经网络模块重复连接,构建深度模糊神经网络模型,并使用蝗虫优化算法对其中心值和宽度进行优化。利用所提太阳总辐射预测模型对5个气象站点的相关数据进行仿真实验,并对结果进行分析。仿真结果表明:所提预测模型较其他模型具有较高的预测精度,验证了模型的有效性,可满足无辐射监测站点太阳总辐射预测的需要。 展开更多
关键词 太阳能 太阳辐射 预测 深度模糊神经网络 蝗虫优化算法
在线阅读 下载PDF
基于改进的RBF神经网络倾角传感器温度补偿方法研究 被引量:1
12
作者 宋启 秦刚 +3 位作者 闫少雄 李佳泽 汪林峰 王静静 《传感器与微系统》 CSCD 北大核心 2024年第11期6-9,共4页
针对MEMS倾角传感器零位温度漂移问题,提出了粒子群优化(PSO)算法和遗传算法(GA)相结合优化径向基函数(RBF)神经网络的补偿方法,克服了RBF神经网络收敛慢、泛用性低的缺陷。结果表明:该方法能够有效地消除温度对MEMS倾角传感器输出的影... 针对MEMS倾角传感器零位温度漂移问题,提出了粒子群优化(PSO)算法和遗传算法(GA)相结合优化径向基函数(RBF)神经网络的补偿方法,克服了RBF神经网络收敛慢、泛用性低的缺陷。结果表明:该方法能够有效地消除温度对MEMS倾角传感器输出的影响。相较于RBF神经网络模型,最大相对误差(MRE)减小了21.03%,均方根误差(RMSE)减小了23.54%,温度漂移得到明显改善,提高了倾角传感器的稳定性与准确性。 展开更多
关键词 倾角传感器 温度补偿 径向基函数神经网络 粒子群优化算法 遗传算法
在线阅读 下载PDF
基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型 被引量:99
13
作者 叶林 陈政 +1 位作者 赵永宁 朱倩雯 《电力系统自动化》 EI CSCD 北大核心 2015年第16期16-22,共7页
针对光伏发电系统出力波动问题,提出遗传算法(GA)—模糊径向基(RBF)神经网络的光伏发电功率预测模型,将功率预测值应用于光伏发电的蓄电池储能功率调节系统,以降低对电网的冲击。选择与待预测日天气类型相同、日期相近、温度欧氏距离最... 针对光伏发电系统出力波动问题,提出遗传算法(GA)—模糊径向基(RBF)神经网络的光伏发电功率预测模型,将功率预测值应用于光伏发电的蓄电池储能功率调节系统,以降低对电网的冲击。选择与待预测日天气类型相同、日期相近、温度欧氏距离最小的历史日作为相似日,把与光伏发电功率相关性大的太阳辐射强度和温度作为模型输入变量,提出K均值聚类和遗传算法的参数优化方法,建立基于GA—模糊RBF神经网络的最终预测模型。在光伏功率预测的基础上,提出一种平滑控制策略,对光伏并网功率进行有效调节,从而达到平滑光伏功率波动的目的。实例证明,所述预测模型具有较高精度,并验证了平滑功率波动控制策略的有效性。 展开更多
关键词 功率预测 遗传算法 模糊径向基神经网络 平滑功率波动
在线阅读 下载PDF
基于改进粒子群区间二型模糊神经网络的MPPT控制研究 被引量:3
14
作者 李凯 姜新正 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期556-564,共9页
针对太阳能发电单元最大功率点控制(MPPT)在复杂工况条件下存在的振荡、跟踪耗时长、精度较低的问题,提出一种基于改进区间二型模糊神经网络的预测控制模型。首先将减法聚类与区间二型模糊均值聚类算法相结合,辨识模型前件模糊规则层结... 针对太阳能发电单元最大功率点控制(MPPT)在复杂工况条件下存在的振荡、跟踪耗时长、精度较低的问题,提出一种基于改进区间二型模糊神经网络的预测控制模型。首先将减法聚类与区间二型模糊均值聚类算法相结合,辨识模型前件模糊规则层结构,计算得到聚类中心;其次,基于自导式粒子群算法优化后件权重层权值参数,进而提升网络全局寻优能力;最后,通过与TS模糊神经网络模型、基于反向传播算法的区间二型模糊神经网络模型进行仿真对比,验证所提模型在不同工况下对最大功率点追踪的快速性与精确性。 展开更多
关键词 光伏发电 最大功率点跟踪 预测控制 模糊神经网络 模糊聚类 粒子群算法
在线阅读 下载PDF
一种模糊神经网络的快速参数学习算法 被引量:21
15
作者 陈非 敬忠良 姚晓东 《控制理论与应用》 EI CAS CSCD 北大核心 2002年第4期583-587,共5页
提出了一种新的模糊神经网络的快速参数学习算法 ,采用一些特殊的处理 ,可以用递推最小二乘法 (RLS)来调整所有的参数 .以前的学习算法在调整模糊隶属度函数的中心和宽度的时候 ,用的是梯度下降法 ,具有容易陷入局部最小值点、收敛速度... 提出了一种新的模糊神经网络的快速参数学习算法 ,采用一些特殊的处理 ,可以用递推最小二乘法 (RLS)来调整所有的参数 .以前的学习算法在调整模糊隶属度函数的中心和宽度的时候 ,用的是梯度下降法 ,具有容易陷入局部最小值点、收敛速度慢等缺点 ,而本算法则可以克服这些缺点 ,最后通过仿真验证了算法的有效性 . 展开更多
关键词 模糊神经网络 快速参数学习算法 T-S模糊推理系统 多层前向神经网络 改进RLS算法
在线阅读 下载PDF
模糊神经网络理论在数控机床热误差补偿建模中的应用 被引量:20
16
作者 张宏韬 姜辉 杨建国 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第12期1950-1952,1961,共4页
应用模糊神经网络的学习性能,以一台数控机床的主轴径向热误差数据进行机床热误差建模和预报,并与常用的反向传播(BP)神经网络模型建模进行对比.结果表明,模糊神经网络模型对机床系统的热特性具有更强的学习能力,能对机床误差作出更为... 应用模糊神经网络的学习性能,以一台数控机床的主轴径向热误差数据进行机床热误差建模和预报,并与常用的反向传播(BP)神经网络模型建模进行对比.结果表明,模糊神经网络模型对机床系统的热特性具有更强的学习能力,能对机床误差作出更为精确的预报,进一步提高了误差补偿的效果. 展开更多
关键词 热误差 误差补偿 模糊神经网络 数控机床
在线阅读 下载PDF
基于模糊自适应变权重算法的函数链神经网络预测方法 被引量:8
17
作者 罗周全 左红艳 +1 位作者 王爽英 王益伟 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期2812-2818,共7页
为提高复杂工业系统非线性时间序列预测精度,将工业系统非线性时间序列不同的单个预测模型预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟... 为提高复杂工业系统非线性时间序列预测精度,将工业系统非线性时间序列不同的单个预测模型预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟合充要条件的基础上,结合模糊自适应变权重算法计算函数链神经网络权重,建立基于模糊自适应变权重算法的函数链神经网络预测模型。研究结果表明:基于模糊自适应变权重算法的函数链神经网络预测方法的预测精度较高,并且平均误差和预测平方根误差均较小,具有较强的泛化能力;该模糊自适应变权重函数链神经网络预测模型可用于复杂非线性工业系统决策。 展开更多
关键词 函数链神经网络 模糊自适应变权重算法 预测 模糊 神经网络
在线阅读 下载PDF
基于遗传算法和模糊神经网络的边坡稳定性评价 被引量:34
18
作者 薛新华 张我华 刘红军 《岩土力学》 EI CAS CSCD 北大核心 2007年第12期2643-2648,共6页
边坡工程是一个动态的、模糊的、开放的复杂非线性系统,传统的分析方法有时难以对复杂边坡的稳定性做出符合实际的评价。影响边坡稳定性的因素复杂且具有随机性和模糊性。由于神经网络方法不仅能考虑定量因素,而且能考虑定性因素的影响... 边坡工程是一个动态的、模糊的、开放的复杂非线性系统,传统的分析方法有时难以对复杂边坡的稳定性做出符合实际的评价。影响边坡稳定性的因素复杂且具有随机性和模糊性。由于神经网络方法不仅能考虑定量因素,而且能考虑定性因素的影响,因而神经网络方法适用于解决非确定性的边坡稳定性评价问题。综合考虑影响边坡稳定性的各方面因素,建立了基于遗传算法的模糊神经网络模型,并利用大量工程资料对网络进行训练和测试。预测结果表明,该模型的预测精度明显高于目前同类方法。 展开更多
关键词 遗传算法 模糊神经网络 边坡稳定性 评价
在线阅读 下载PDF
基于BP神经网络的传感器特性补偿新算法的研究 被引量:25
19
作者 司端锋 常炳国 刘君华 《仪表技术与传感器》 CSCD 北大核心 2000年第1期11-13,16,共4页
在用人工神经网络对传感器特性进行补偿的基础上,进行了一些改进与简化,提出了一种简化的快速算法,通过多步继承法、神经元功能函数平移法、停止条件比较法等措施,对BP神经网络本身的一些缺陷,如收敛速度慢、容易收敛到局部最小点等进... 在用人工神经网络对传感器特性进行补偿的基础上,进行了一些改进与简化,提出了一种简化的快速算法,通过多步继承法、神经元功能函数平移法、停止条件比较法等措施,对BP神经网络本身的一些缺陷,如收敛速度慢、容易收敛到局部最小点等进行了弥补,并用MATLAB语言编制了训练程序。结果表明,该算法可以进一步提高数据拟合的精度。 展开更多
关键词 神经网络 BP算法 传感器 补偿 数据拟合
在线阅读 下载PDF
基于模糊神经网络的车辆避撞预警算法 被引量:9
20
作者 高峰 王江锋 +1 位作者 施绍友 王健 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2006年第3期211-215,共5页
为实现车辆的智能控制提供理论基础,研究了碰撞预警算法.在分析不同驾驶员的驾驶行为的基础上,确定碰撞预警算法的报警准则,用于指导报警算法做出合理的报警.基于报警准则采用模糊神经网络方法,提出一种多输入、多输出的协作预警算法模... 为实现车辆的智能控制提供理论基础,研究了碰撞预警算法.在分析不同驾驶员的驾驶行为的基础上,确定碰撞预警算法的报警准则,用于指导报警算法做出合理的报警.基于报警准则采用模糊神经网络方法,提出一种多输入、多输出的协作预警算法模型,用于支持碰撞预警系统.利用实测数据对预警算法进行测试,试验结果表明,算法能够对车辆碰撞进行有效的报警,对提高车辆行驶的安全性具有重要意义. 展开更多
关键词 智能车辆控制 碰撞预警算法 预警算法模型 模糊神经网络 安全性
在线阅读 下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部