To effectively solve the traffic data problems such as data invalidation in the process of the acquisition of road traffic states,a road traffic states estimation algorithm based on matching of the regional traffic at...To effectively solve the traffic data problems such as data invalidation in the process of the acquisition of road traffic states,a road traffic states estimation algorithm based on matching of the regional traffic attracters was proposed in this work.First of all,the road traffic running states were divided into several different modes.The concept of the regional traffic attracters of the target link was put forward for effective matching.Then,the reference sequences of characteristics of traffic running states with the contents of the target link's traffic running states and regional traffic attracters under different modes were established.In addition,the current and historical regional traffic attracters of the target link were matched through certain matching rules,and the historical traffic running states of the target link corresponding to the optimal matching were selected as the initial recovery data,which were processed with Kalman filter to obtain the final recovery data.Finally,some typical expressways in Beijing were adopted for the verification of this road traffic states estimation algorithm.The results prove that this traffic states estimation approach based on matching of the regional traffic attracters is feasible and can achieve a high accuracy.展开更多
Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work w...Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.展开更多
The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between c...The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between clustering aggregation and the problem of correlation clustering.The best deterministic approximation algorithm was provided for the variation of the correlation of clustering problem,and showed how sampling can be used to scale the algorithms for large datasets.An extensive empirical evaluation was given for the usefulness of the problem and the solutions.The results show that this method achieves more than 50% reduction in the running time without sacrificing the quality of the clustering.展开更多
Traditional human detection using pre-trained detectors tends to be computationally intensive for time-critical tracking tasks, and the detection rate is prone to be unsatisfying when occlusion, motion blur and body d...Traditional human detection using pre-trained detectors tends to be computationally intensive for time-critical tracking tasks, and the detection rate is prone to be unsatisfying when occlusion, motion blur and body deformation occur frequently. A spatial-confidential proposal filtering method(SCPF) is proposed for efficient and accurate human detection. It consists of two filtering phases: spatial proposal filtering and confidential proposal filtering. A compact spatial proposal is generated in the first phase to minimize the search space to reduce the computation cost. The human detector only estimates the confidence scores of the candidate search regions accepted by the spatial proposal instead of global scanning. At the second phase, each candidate search region is assigned with a supplementary confidence score according to their reliability estimated by the confidential proposal to reduce missing detections. The performance of the SCPF method is verified by extensive tests on several video sequences from available public datasets. Both quantitatively and qualitatively experimental results indicate that the proposed method can highly improve the efficiency and the accuracy of human detection.展开更多
To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was ...To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.展开更多
基金Projects(D07020601400707,D101106049710005)supported by the Beijing Science Foundation Plan Project,ChinaProjects(2006AA11Z231,2012AA112401)supported by the National High Technology Research and Development Program of China(863 Program)Project(61104164)supported by the National Natural Science Foundation of China
文摘To effectively solve the traffic data problems such as data invalidation in the process of the acquisition of road traffic states,a road traffic states estimation algorithm based on matching of the regional traffic attracters was proposed in this work.First of all,the road traffic running states were divided into several different modes.The concept of the regional traffic attracters of the target link was put forward for effective matching.Then,the reference sequences of characteristics of traffic running states with the contents of the target link's traffic running states and regional traffic attracters under different modes were established.In addition,the current and historical regional traffic attracters of the target link were matched through certain matching rules,and the historical traffic running states of the target link corresponding to the optimal matching were selected as the initial recovery data,which were processed with Kalman filter to obtain the final recovery data.Finally,some typical expressways in Beijing were adopted for the verification of this road traffic states estimation algorithm.The results prove that this traffic states estimation approach based on matching of the regional traffic attracters is feasible and can achieve a high accuracy.
基金Projects(51075401,U1334205)supported by the National Natural Science Foundation of ChinaProject supported by the Scholarship Award for Excellent Innovative Doctoral Student granted by Central South University of ChinaProject(132014)supported by the Fok Ying Tong Education Foundation,China
文摘Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains.
基金Projects(60873265,60903222) supported by the National Natural Science Foundation of China Project(IRT0661) supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between clustering aggregation and the problem of correlation clustering.The best deterministic approximation algorithm was provided for the variation of the correlation of clustering problem,and showed how sampling can be used to scale the algorithms for large datasets.An extensive empirical evaluation was given for the usefulness of the problem and the solutions.The results show that this method achieves more than 50% reduction in the running time without sacrificing the quality of the clustering.
基金Projects(61175096,60772063)supported by the National Natural Science Foundation of China
文摘Traditional human detection using pre-trained detectors tends to be computationally intensive for time-critical tracking tasks, and the detection rate is prone to be unsatisfying when occlusion, motion blur and body deformation occur frequently. A spatial-confidential proposal filtering method(SCPF) is proposed for efficient and accurate human detection. It consists of two filtering phases: spatial proposal filtering and confidential proposal filtering. A compact spatial proposal is generated in the first phase to minimize the search space to reduce the computation cost. The human detector only estimates the confidence scores of the candidate search regions accepted by the spatial proposal instead of global scanning. At the second phase, each candidate search region is assigned with a supplementary confidence score according to their reliability estimated by the confidential proposal to reduce missing detections. The performance of the SCPF method is verified by extensive tests on several video sequences from available public datasets. Both quantitatively and qualitatively experimental results indicate that the proposed method can highly improve the efficiency and the accuracy of human detection.
基金Project(61273055) supported by the National Natural Science Foundation of ChinaProject(CX2010B012) supported by Hunan Provincial Innovation Foundation for Postgraduate Students, ChinaProject(B100302) supported by Innovation Foundation for Postgraduate Students of National University of Defense Technology, China
文摘To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.