期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
冰雪条件下城市道路交通安全评价方法研究 被引量:21
1
作者 程国柱 莫宣艳 毛程远 《交通运输系统工程与信息》 EI CSCD 2011年第1期130-134,共5页
在城市道路交通运行环境中,冰雪路面对机动车行驶安全性有着显著的不利影响.本文通过采集积雪路面、粗糙冰路面、光滑冰路面、冰雪混合路面的摩擦系数数据,基于驾驶员在冰雪路面行车时的制动反应时间与制动距离分析,计算给出了不同类型... 在城市道路交通运行环境中,冰雪路面对机动车行驶安全性有着显著的不利影响.本文通过采集积雪路面、粗糙冰路面、光滑冰路面、冰雪混合路面的摩擦系数数据,基于驾驶员在冰雪路面行车时的制动反应时间与制动距离分析,计算给出了不同类型冰雪状态下对应不同行驶车速的机动车停车距离.基于车间距与停车距离定义了冰雪路面的行车安全度,分析结果表明,若驾驶员保持相同的行驶车速与车间距,其在不同类型冰雪路面上行车的安全度有显著的差别.给出了不同类型冰雪路面、不同交通量对应的行车安全最高车速计算方法,以小型车为例,给出了保证冰雪路面行车安全的最高车速建议值. 展开更多
关键词 交通工程 冰雪路面 摩擦系数 制动距离 行车安全度 车间距
在线阅读 下载PDF
A novel refined dynamic model of high-speed maglev train-bridge coupled system for random vibration and running safety assessment
2
作者 MAO Jian-feng LI Dao-hang +3 位作者 YU Zhi-wu CAI Wen-feng GUO Wei ZHANG Guang-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2532-2544,共13页
Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b... Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval. 展开更多
关键词 maglev train-bridge interaction electromagnetic force-air gap model stochastic dynamic analysis running safety assessment probability density evolution method
在线阅读 下载PDF
Running safety and seismic optimization of a fault-crossing simply-supported girder bridge for high-speed railways based on a train-track-bridge coupling system 被引量:10
3
作者 JIANG Hui ZENG Cong +3 位作者 PENG Qiang LI Xin MAXin-yi SONG Guang-song 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2449-2466,共18页
Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-sup... Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively. 展开更多
关键词 high-speed train train-track-bridge interaction fault-crossing ground motion train operation safety speed limit track structure optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部