Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop pl...Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying liquid filled ratios(50%, 70%, 85%), section scales(1 mm×1 mm and 1 mm×1.5 mm), inclination angles, working fluids and heating inputs. It was found that during operating there was mixed flow consisting of plug flow and annular flow in channels of oscillating heat pipe at steady-state. There was an equilibrium position for working fluid of condenser during oscillating, and periodic oscillations occurred up and down in the vicinity of equilibrium position. With heat input increasing, equilibrium position rose slowly as a result of vapor pressure of evaporation.Evaporation temperature oscillating amplitude possessed a trend of small-large-small and frequency trend was of small-large during steady-state. It may be generally concluded that temperature, whether evaporator or condenser, fluctuated sharply or rose continuously when oscillating heat pipe coming to dry burning state. Simultaneously, it was found that temperature difference of cooling water possibly dropped with heat input rising during dry burning state. Thermal resistance of No. 2 with acetone was lower than that of No. 1 during experiments, but No. 2 achieving heat transfer limit was earlier than No. 1. However, with ethanol, thermal resistance of No. 1 and No. 2 were similar with the heating input less than 110-120 W and filling ratios of 50% and 70%. And with filling ratio of 85%, heating transfer performance of No. 2 was better compared to No. 1 during all the experiments.展开更多
The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indi...The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indirect method. Digital images of expansive soil of the surface fissure with different moisture contents were analyzed with the binarization statistic method. In addition, the fissure fractal dimension was computed with a self-compiled program. Combined with in situ seepage and loading plate tests, the relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus was initially established. The surface fissure ratio and moisture content show a linear relation, "y=-0.019 1x+1.028 5" for rufous expansive soil and "y=-0.07 1x+2.610 5" for grey expansive soil. Soil initial seepage coefficient and surface fissure ratio show a power function relation, "y=1× 10^-9exp(15.472x)" for rufous expansive soil and "y=5× 10^-7exp(4.209 6x)" for grey expansive soil. Grey expansive soil deformation modulus and surface fissure ratio show a power fimction relation of "y=3.935 7exp(0.993 6x)". Based on the binarization and fractal dimension methods, the results show that the surface fissure statistics can depict the fissure distribution in the view of two dimensions. And the evolvement behaviors of permeability and the deformation modulus can indirectly describe the developing state of the fissure. The analysis reflects that the engineering behaviors of unsaturated expansive soil are objectively influenced by fissure.展开更多
基金Project(51306198)supported by the National Natural Science Foundation of ChinaProject(NR2013K07)supported by Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering,China+1 种基金Project(331614013)supported by Beijing University of Civil Engineering and Architecture,ChinaProject(00921915023)supported by Organization Department of Beijing,China
文摘Using ethanol or acetone as the working fluid, visualization of oscillations in steady state was observed visually by high-speed cameras, and temperature oscillating and heat transfer characteristics of closed-loop plate oscillating heat pipe with parallel channels(POHP-PC) were experimentally investigated by varying liquid filled ratios(50%, 70%, 85%), section scales(1 mm×1 mm and 1 mm×1.5 mm), inclination angles, working fluids and heating inputs. It was found that during operating there was mixed flow consisting of plug flow and annular flow in channels of oscillating heat pipe at steady-state. There was an equilibrium position for working fluid of condenser during oscillating, and periodic oscillations occurred up and down in the vicinity of equilibrium position. With heat input increasing, equilibrium position rose slowly as a result of vapor pressure of evaporation.Evaporation temperature oscillating amplitude possessed a trend of small-large-small and frequency trend was of small-large during steady-state. It may be generally concluded that temperature, whether evaporator or condenser, fluctuated sharply or rose continuously when oscillating heat pipe coming to dry burning state. Simultaneously, it was found that temperature difference of cooling water possibly dropped with heat input rising during dry burning state. Thermal resistance of No. 2 with acetone was lower than that of No. 1 during experiments, but No. 2 achieving heat transfer limit was earlier than No. 1. However, with ethanol, thermal resistance of No. 1 and No. 2 were similar with the heating input less than 110-120 W and filling ratios of 50% and 70%. And with filling ratio of 85%, heating transfer performance of No. 2 was better compared to No. 1 during all the experiments.
基金Projects(41102229,51109208)supported by the National Natural Science Foundation of ChinaProject(2011CDB407)supported by Natural Science Foundation of Hubei Province,ChinaProject supported by Qing Lan Project of Jiangsu Province,China
文摘The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indirect method. Digital images of expansive soil of the surface fissure with different moisture contents were analyzed with the binarization statistic method. In addition, the fissure fractal dimension was computed with a self-compiled program. Combined with in situ seepage and loading plate tests, the relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus was initially established. The surface fissure ratio and moisture content show a linear relation, "y=-0.019 1x+1.028 5" for rufous expansive soil and "y=-0.07 1x+2.610 5" for grey expansive soil. Soil initial seepage coefficient and surface fissure ratio show a power function relation, "y=1× 10^-9exp(15.472x)" for rufous expansive soil and "y=5× 10^-7exp(4.209 6x)" for grey expansive soil. Grey expansive soil deformation modulus and surface fissure ratio show a power fimction relation of "y=3.935 7exp(0.993 6x)". Based on the binarization and fractal dimension methods, the results show that the surface fissure statistics can depict the fissure distribution in the view of two dimensions. And the evolvement behaviors of permeability and the deformation modulus can indirectly describe the developing state of the fissure. The analysis reflects that the engineering behaviors of unsaturated expansive soil are objectively influenced by fissure.