针对智能交通系统中行程时间估计的不确定性量化的难题,提出一种全局-局部不确定性感知行程时间估计方法(global and local uncertainty-aware travel time estimation,GLUTTE)。首先,通过多任务学习策略建模整体路线与各局部路段的行...针对智能交通系统中行程时间估计的不确定性量化的难题,提出一种全局-局部不确定性感知行程时间估计方法(global and local uncertainty-aware travel time estimation,GLUTTE)。首先,通过多任务学习策略建模整体路线与各局部路段的行程时间关系及其不确定性。其次,采用多粒度分位数回归方法,综合考虑全局和局部特征,提供准确的置信区间估计。实验结果表明,所提方法能够有效量化不确定性,同时保证准确性并提供可靠的置信区间,从而提升结果的可用性和可信度。展开更多
文摘为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以路段行程时间估计误差最小为目标选取当前交通模式的近邻数,对交通模式之间距离的倒数进行归一化处理,确定了相似交通模式的行程时间权重,设计了基于SCATS交通数据的路段行程时间估计方法.实例结果表明:与多元线性回归方法相比,本文方法估计的路段行程时间平均绝对误差、平均绝对百分比误差和均方根误差分别平均减少了9.68 s、8.07%和4.5 s.
文摘针对智能交通系统中行程时间估计的不确定性量化的难题,提出一种全局-局部不确定性感知行程时间估计方法(global and local uncertainty-aware travel time estimation,GLUTTE)。首先,通过多任务学习策略建模整体路线与各局部路段的行程时间关系及其不确定性。其次,采用多粒度分位数回归方法,综合考虑全局和局部特征,提供准确的置信区间估计。实验结果表明,所提方法能够有效量化不确定性,同时保证准确性并提供可靠的置信区间,从而提升结果的可用性和可信度。