期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
基于流形正则化的批量分层编码极限学习机 被引量:2
1
作者 刘彬 杨有恒 +3 位作者 刘静 王卫涛 刘浩然 闻岩 《计量学报》 CSCD 北大核心 2021年第7期937-943,共7页
针对极限学习机在处理高维数据时存在内存能耗大、分类准确率低、泛化性差等问题,提出了一种批量分层编码极限学习机算法。首先通过对数据集分批处理,以减小数据维度,降低输入复杂性;然后采用多层自动编码器结构对各批次数据进行无监督... 针对极限学习机在处理高维数据时存在内存能耗大、分类准确率低、泛化性差等问题,提出了一种批量分层编码极限学习机算法。首先通过对数据集分批处理,以减小数据维度,降低输入复杂性;然后采用多层自动编码器结构对各批次数据进行无监督编码,以实现深层特征提取;最后利用流形正则化思想构建含有继承因子的流形分类器,以保持数据的完整性,提高算法的泛化性能。实验结果表明,该方法实现简单,在NORB,MNIST和USPS数据集上的分类准确率分别可以达到92.16%、99.35%和98.86%,与其它极限学习机算法对比,在降低计算复杂度和减少CPU内存消耗上具有较明显的优势。 展开更多
关键词 计量学 极限学习 高维数据 批次学习 无监督编码 流形正则化
在线阅读 下载PDF
基于核极限学习机自编码器的转盘轴承寿命状态识别 被引量:5
2
作者 潘裕斌 王华 +1 位作者 陈捷 洪荣晶 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第9期1856-1866,共11页
针对低速重载转盘轴承运行工况恶劣、故障特征微弱的特点,提出基于飞蛾扑火算法优化多层核极限学习机自编码器(MFO-MLKELM-AE)的转盘轴承寿命状态识别方法.该方法从振动信号的时域和时频域中提取出多个能够表征转盘轴承运行状态的特征向... 针对低速重载转盘轴承运行工况恶劣、故障特征微弱的特点,提出基于飞蛾扑火算法优化多层核极限学习机自编码器(MFO-MLKELM-AE)的转盘轴承寿命状态识别方法.该方法从振动信号的时域和时频域中提取出多个能够表征转盘轴承运行状态的特征向量,并将其组成高维特征集.采用堆叠多层核极限学习机自编码器(MLKELM-AE),从高维特征集中提取最能反映转盘轴承的寿命状态信息,输入核极限学习机(KELM)模型进行寿命状态识别.在MLKELM-AE学习训练中,采用新的飞蛾扑火算法(MFO)优化惩罚系数和核参数,提高MLKELM-AE的特征识别能力.转盘轴承加速寿命实验表明,MLKELM-AE比多层极限学习机自编码器(MLELMAE)、单层极限学习机(ELM)、KELM的识别精度高,多传感器、多领域特征能够全面反映转盘轴承的寿命状态. 展开更多
关键词 低速重载转盘轴承 多层核极限学习自编码器(MLKELM-AE) 飞蛾扑火算法(MFO) 寿命状态识别 多领域特征
在线阅读 下载PDF
含类信息的极限学习机自动编码器特征学习方法 被引量:2
3
作者 程蓉 白艳萍 +2 位作者 胡红萍 谭秀辉 续婷 《电子测量技术》 北大核心 2022年第16期71-79,共9页
极限学习机自动编码器(ELM-AE)将极限学习机(ELM)技术与自动编码器(AE)结合,可以无监督学习数据特征且克服了参数迭代调整的昂贵时间消耗。然而,以最小化重构误差为目标的ELM-AE并不能有效利用分类问题中的数据类别信息,导致特征的类别... 极限学习机自动编码器(ELM-AE)将极限学习机(ELM)技术与自动编码器(AE)结合,可以无监督学习数据特征且克服了参数迭代调整的昂贵时间消耗。然而,以最小化重构误差为目标的ELM-AE并不能有效利用分类问题中的数据类别信息,导致特征的类别可分性较差。针对此现象,本文提出一种面向数据分类的含类信息极限学习机自编码(CELM-AE)特征学习方法,该方法将投影特征向量的类间离散度与类内相似度限制到ELM-AE的目标函数中,且可通过解析算法求得更具类别分辨力的最优数据表示。对6种UCI数据集分别使用基于CELM-AE、ELM-AE和AE的特征表示进行分类实验,结果表明,CELM-AE得到的数据特征在两种分类器(ELM/KNN)下的分类精度与稳定性表现均优于ELM-AE与AE,且时间代价很小,说明了CELM-AE在提取可分性数据特征表示方面的优势。 展开更多
关键词 极限学习 自动编码 特征学习 数据分类
在线阅读 下载PDF
子空间结构保持的多层极限学习机自编码器 被引量:5
4
作者 陈晓云 陈媛 《自动化学报》 EI CAS CSCD 北大核心 2022年第4期1091-1104,共14页
处理高维复杂数据的聚类问题,通常需先降维后聚类,但常用的降维方法未考虑数据的同类聚集性和样本间相关关系,难以保证降维方法与聚类算法相匹配,从而导致聚类信息损失.非线性无监督降维方法极限学习机自编码器(Extreme learning machin... 处理高维复杂数据的聚类问题,通常需先降维后聚类,但常用的降维方法未考虑数据的同类聚集性和样本间相关关系,难以保证降维方法与聚类算法相匹配,从而导致聚类信息损失.非线性无监督降维方法极限学习机自编码器(Extreme learning machine,ELM-AE)因其学习速度快、泛化性能好,近年来被广泛应用于降维及去噪.为使高维数据投影至低维空间后仍能保持原有子空间结构,提出基于子空间结构保持的多层极限学习机自编码器降维方法(Multilayer extreme learning machine autoencoder based on subspace structure preserving,ML-SELM-AE).该方法在保持聚类样本多子空间结构的同时,利用多层极限学习机自编码器捕获样本集的深层特征.实验结果表明,该方法在UCI数据、脑电数据和基因表达谱数据上可以有效提高聚类准确率且取得较高的学习效率. 展开更多
关键词 多层极限学习 自编码 子空间学习 降维
在线阅读 下载PDF
基于栈式降噪稀疏自编码器的极限学习机 被引量:11
5
作者 张国令 王晓丹 +2 位作者 李睿 来杰 向前 《计算机工程》 CAS CSCD 北大核心 2020年第9期61-67,共7页
极限学习机(ELM)随机选择网络输入权重和隐层偏置,存在网络结构复杂和鲁棒性较弱的不足。为此,提出基于栈式降噪稀疏自编码器(sDSAE)的ELM算法。利用sDSAE稀疏网络的优势,挖掘目标数据的深层特征,为ELM产生输入权值与隐层偏置以求得隐... 极限学习机(ELM)随机选择网络输入权重和隐层偏置,存在网络结构复杂和鲁棒性较弱的不足。为此,提出基于栈式降噪稀疏自编码器(sDSAE)的ELM算法。利用sDSAE稀疏网络的优势,挖掘目标数据的深层特征,为ELM产生输入权值与隐层偏置以求得隐层输出权值,完成训练分类器,同时通过加入稀疏性约束优化网络结构,提高算法分类准确率。实验结果表明,与ELM、PCA-ELM、ELM-AE和DAE-ELM算法相比,该算法在处理高维含噪数据时分类准确率较高,并且具有较强的鲁棒性。 展开更多
关键词 极限学习 降噪稀疏自编码 稀疏性 深度学习 特征提取
在线阅读 下载PDF
基于去噪自编码器的极限学习机 被引量:5
6
作者 来杰 王晓丹 +1 位作者 李睿 赵振冲 《计算机应用》 CSCD 北大核心 2019年第6期1619-1625,共7页
针对极限学习机算法(ELM)参数随机赋值降低算法鲁棒性及性能受噪声影响显著的问题,将去噪自编码器(DAE)与ELM算法相结合,提出了基于去噪自编码器的极限学习机算法(DAE-ELM)。首先,通过去噪自编码器产生ELM的输入数据、输入权值与隐含层... 针对极限学习机算法(ELM)参数随机赋值降低算法鲁棒性及性能受噪声影响显著的问题,将去噪自编码器(DAE)与ELM算法相结合,提出了基于去噪自编码器的极限学习机算法(DAE-ELM)。首先,通过去噪自编码器产生ELM的输入数据、输入权值与隐含层参数;然后,以ELM求得隐含层输出权值,完成对分类器的训练。该算法一方面继承了DAE的优点,自动提取的特征更具代表性与鲁棒性,对于噪声有较强的抑制作用;另一方面克服了ELM参数赋值的随机性,增强了算法鲁棒性。实验结果表明,在不含噪声影响下DAE-ELM相较于ELM、PCA-ELM、SAA-2算法,其分类错误率在MNIST数据集中至少下降了5.6%,在Fashion MNIST数据集中至少下降了3.0%,在Rectangles数据集中至少下降了2.0%,在Convex数据集中至少下降了12.7%。 展开更多
关键词 极限学习 深度学习 去噪自编码 特征提取 特征降维 鲁棒性
在线阅读 下载PDF
基于结构化遮挡编码和极限学习机的局部遮挡人脸识别 被引量:5
7
作者 张芳艳 王新 许新征 《计算机应用》 CSCD 北大核心 2019年第10期2893-2898,共6页
提出使用结构化遮挡编码(SOC)结合极限学习机(ELM)的算法来处理人脸识别中的遮挡问题。首先,使用SOC去除图像上的遮挡物,将遮挡物体与人脸分离开;同时,通过局部性约束字典(LCD)来估计遮挡物的位置,建立遮挡字典和人脸字典。然后,将建立... 提出使用结构化遮挡编码(SOC)结合极限学习机(ELM)的算法来处理人脸识别中的遮挡问题。首先,使用SOC去除图像上的遮挡物,将遮挡物体与人脸分离开;同时,通过局部性约束字典(LCD)来估计遮挡物的位置,建立遮挡字典和人脸字典。然后,将建立好的人脸字典矩阵进行归一化处理,并利用ELM对归一化的数据进行分类识别。最后,在AR人脸库上进行的仿真实验结果表明,所提方法对不同遮挡物和不同区域遮挡的图像具有较好的识别率和鲁棒性。 展开更多
关键词 人脸识别 遮挡 结构化遮挡编码 局部性约束字典 极限学习
在线阅读 下载PDF
基于混合卷积自编码极限学习机的RGB-D物体识别 被引量:9
8
作者 殷云华 李会方 《红外与激光工程》 EI CSCD 北大核心 2018年第2期52-59,共8页
有效学习丰富的表征信息在RGB-D目标识别任务中至关重要,是实现高泛化性能的关键。针对卷积神经网络训练时间长的问题,提出了一种混合卷积自编码极限学习机(HCAE-ELM)结构,包括卷积神经网络(CNN)和自编码极限学习机(AE-ELM),该结构合并... 有效学习丰富的表征信息在RGB-D目标识别任务中至关重要,是实现高泛化性能的关键。针对卷积神经网络训练时间长的问题,提出了一种混合卷积自编码极限学习机(HCAE-ELM)结构,包括卷积神经网络(CNN)和自编码极限学习机(AE-ELM),该结构合并了CNN的有效性和AE-ELM快速性的优点。它使用卷积层和池化层分别从RGB和深度图来有效提取低阶特征,然后在共享层合并两种模型特征,输入到自编码极限学习机中以得到高层次的特征,最终的特征使用极限学习机(ELM)进行分类,以获得更好的快速泛化能力。文中在标准的RGB-D数据集上进行了评估测试,其实验结果表明,相比较深度学习和其他的ELM方法,文中的混合卷积自编码极限学习机模型取得了良好的测试准确率,并且有效地缩减了训练时间。 展开更多
关键词 极限学习 卷积神经网络 自编码极限学习 物体识别
在线阅读 下载PDF
基于深度小波自动编码器和极限学习机的轴承故障诊断 被引量:19
9
作者 陶沙沙 郭顺生 《科学技术与工程》 北大核心 2020年第29期12196-12203,共8页
针对原始振动数据无监督特征学习问题,提出了一种深度小波自动编码器(deep wavelet automatic encoder,DWAE)与鲁棒极限学习机(extreme learning machine,ELM)相结合的滚动轴承的智能故障诊断方法。首先,利用小波函数作为非线性激活函... 针对原始振动数据无监督特征学习问题,提出了一种深度小波自动编码器(deep wavelet automatic encoder,DWAE)与鲁棒极限学习机(extreme learning machine,ELM)相结合的滚动轴承的智能故障诊断方法。首先,利用小波函数作为非线性激活函数设计小波自动编码器从而有效地捕获信号特征。其次,利用多个小波自动编码器构造一个深度小波自动编码器来增强无监督特征学习能力。最后,采用鲁棒极限学习机作为分类器,对不同的轴承故障进行分类识别。对实验所得的轴承振动信号进行对比分析,结果验证了研究结果能够在原始振动数据无监督特征学习的条件下该方法优于传统方法和标准深度学习方法。 展开更多
关键词 智能故障诊断 滚动轴承 深度小波自动编码 极限学习 无监督特征学习
在线阅读 下载PDF
基于栈式自编码融合极限学习机的药品鉴别 被引量:3
10
作者 张卫东 路皓翔 +1 位作者 甘博瑞 杨辉华 《计算机工程与设计》 北大核心 2019年第2期545-549,561,共6页
近红外光谱数据维度较高,传统的特征提取方法不足以提取更高层次的抽象特征,为此提出一种栈式自编码融合极限学习机的药品鉴别方法,利用ELM代替SAE的反向微调和Softmax分类阶段,减少了SAE的训练时间,提高了SAE的应用能力。以不同厂商生... 近红外光谱数据维度较高,传统的特征提取方法不足以提取更高层次的抽象特征,为此提出一种栈式自编码融合极限学习机的药品鉴别方法,利用ELM代替SAE的反向微调和Softmax分类阶段,减少了SAE的训练时间,提高了SAE的应用能力。以不同厂商生产的非铝塑包装的头孢克肟片药品的近红外光谱为实例,在不同规模的数据集下,验证该算法,并与其它机器学习方法进行对比。实验结果表明,SAE-ELM减少了SAE的训练时间,具有较高分类准确率和稳定性。 展开更多
关键词 抽象特征 近红外光谱 药品鉴别 栈式自编码 极限学习
在线阅读 下载PDF
流形极限学习机自编码特征表示 被引量:1
11
作者 陈媛 陈晓云 《计算机工程与应用》 CSCD 北大核心 2020年第17期150-155,共6页
极限学习机(ELM)作为一种无监督分类方法,具有学习速度快、泛化性能高、逼近能力好的优点。随着无监督学习的发展,将ELM与自动编码器集成已成为无标签数据集提取特征的新视角,如极限学习机自动编码器(ELMAE)是一种无监督的神经网络,无... 极限学习机(ELM)作为一种无监督分类方法,具有学习速度快、泛化性能高、逼近能力好的优点。随着无监督学习的发展,将ELM与自动编码器集成已成为无标签数据集提取特征的新视角,如极限学习机自动编码器(ELMAE)是一种无监督的神经网络,无需迭代即可找到代表原始样本和其学习过程的主要成分。其重建输入信号获取原始样本的主要特征,且考虑了原始数据的全局信息以避免信息的丢失,然而这类方法未考虑数据的固有流形结构即样本间的近邻结构关系。借鉴极限学习机自动编码器的思想,提出了一种基于流形的极限学习机自动编码器算法(M-ELM)。该算法是一种非线性无监督特征提取方法,结合流形学习保持数据的局部信息,且在特征提取过程中同时对相似度矩阵进行学习。通过在IRIS数据集、脑电数据集和基因表达数据集上进行实验,将该算法与其他无监督学习方法PCA、LPP、NPE、LE和ELM-AE算法经过k-means聚类后的准确率进行了比较,以表明该算法的有效性。 展开更多
关键词 极限学习 极限学习自动编码 流形学习 无监督学习 特征提取
在线阅读 下载PDF
基于自编码器和极限学习机的工业控制网络入侵检测算法 被引量:22
12
作者 李熠 李永忠 《南京理工大学学报》 EI CAS CSCD 北大核心 2019年第4期408-413,共6页
针对目前未知工业控制网络攻击检测方法处于初级阶段,浅层次的选取特征分类导致检测率较低的问题,提出一种稀疏自编码-极限学习机入侵检测模型。该文所提算法通过深度学习的稀疏自编码器在训练时结合编码层的系数惩罚和重构误差对高维... 针对目前未知工业控制网络攻击检测方法处于初级阶段,浅层次的选取特征分类导致检测率较低的问题,提出一种稀疏自编码-极限学习机入侵检测模型。该文所提算法通过深度学习的稀疏自编码器在训练时结合编码层的系数惩罚和重构误差对高维数据进行特征提取,再运用极限学习机对提取的特征进行快速有效地精准分类,使用工控入侵检测标准数据集对算法准确性进行了验证,通过和不同类型的入侵检测模型进行比较。结果表明:该文方法可以有效提升入侵检测系统性能,符合工业控制入侵检测“高精度、低误报”的要求。 展开更多
关键词 工控网络 入侵检测 自编码 极限学习
在线阅读 下载PDF
基于极限学习机与子空间追踪的人脸识别算法 被引量:10
13
作者 张建明 刘阳春 吴宏林 《计算机工程》 CAS CSCD 北大核心 2016年第1期168-173,共6页
极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别... 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别算法,从而达到高识别率与快速的识别效果。该算法根据测试样本的ELM实际输出向量判断是否为噪声图像,干净图像直接依据ELM输出向量进行分类,噪声图像采用子空间追踪算法结合SRC框架来分类。在扩展的Yale B和ORL人脸数据库上的实验结果表明,该算法不仅识别率高,且识别速度快。 展开更多
关键词 人脸识别 极限学习 稀疏表示 稀疏编码 子空间追踪
在线阅读 下载PDF
基于VMD与分层极限学习机的滚动轴承故障诊断方法研究 被引量:4
14
作者 秦波 孙国栋 王建国 《组合机床与自动化加工技术》 北大核心 2017年第4期107-110,共4页
针对滚动轴承信号的不规则特性,致使信号故障特征难提取及难以辨识的问题,为实现滚动轴承故障的智能诊断,提出基于VMD排列熵与分层极限学习机的滚动轴承故障诊断方法。首先将测得振动信号进行变分模态分解(Variational Mode Decompositi... 针对滚动轴承信号的不规则特性,致使信号故障特征难提取及难以辨识的问题,为实现滚动轴承故障的智能诊断,提出基于VMD排列熵与分层极限学习机的滚动轴承故障诊断方法。首先将测得振动信号进行变分模态分解(Variational Mode Decomposition,VMD),利用排列熵进一步提取各模态特征组成高维特征向量集;其次利用自动编码器(Automatic Encoder,AE)对极限学习机的隐含层进行分层,且使隐含层节点的输入权值和阈值满足正交条件;最后将构建的特征向量作为H-ELM算法的输入,通过训练建立H-ELM滚动轴承故障分类模型。实验结果表明:H-ELM滚动轴承故障分类模型比SVM、ELM故障分类模型具有更高的精度、更强的稳定性。 展开更多
关键词 滚动轴承 变分模态分解 自动编码 极限学习
在线阅读 下载PDF
基于多隐层极限学习机的文本分类方法 被引量:4
15
作者 冀俊忠 庞皓明 +1 位作者 杨翠翠 刘金铎 《北京工业大学学报》 CAS CSCD 北大核心 2019年第6期534-545,共12页
针对正则化极限学习机处理高维文本数据时文本特征表示能力不足的问题,提出了一种基于多隐层极限学习机的文本分类方法.首先,使用极限学习机自编码器的压缩表示对高维文本数据进行降维处理.然后,通过多隐层极限学习机的多隐层结构提取... 针对正则化极限学习机处理高维文本数据时文本特征表示能力不足的问题,提出了一种基于多隐层极限学习机的文本分类方法.首先,使用极限学习机自编码器的压缩表示对高维文本数据进行降维处理.然后,通过多隐层极限学习机的多隐层结构提取出高层文本特征并通过最小二乘的方法对文本数据进行分类.与多个算法的实验对比表明,该算法在20newsgroup、Reuters和复旦大学中文语料库这3个数据集上都具有良好的分类性能. 展开更多
关键词 文本分类 高维文本 多隐层极限学习 极限学习自编码 特征映射 神经网络
在线阅读 下载PDF
基于深度极限学习机的模拟电路故障诊断 被引量:15
16
作者 颜学龙 马润平 《计算机工程与科学》 CSCD 北大核心 2019年第11期1911-1918,共8页
针对模拟电路故障诊断中特征提取以及模型训练时间较长的难题,采用了一种基于深度极限学习机的模拟电路故障诊断算法。该算法将深度学习中自编码器的思想引入到极限学习机中,构建深度网络,将底层的故障特征转换更加抽象的高级特征,能自... 针对模拟电路故障诊断中特征提取以及模型训练时间较长的难题,采用了一种基于深度极限学习机的模拟电路故障诊断算法。该算法将深度学习中自编码器的思想引入到极限学习机中,构建深度网络,将底层的故障特征转换更加抽象的高级特征,能自主地学习数据特征,避免了繁琐的特征提取和选择。最终通过Sallen-Key和四运放双二次高通滤波2个模拟电路进行仿真研究,实验结果验证了算法在模拟电路故障诊断上的可行性,也表明模型学习速度快、泛化能力好,具有较强的诊断能力,故障诊断分类准确率可以达到100%,诊断时间在0.3 s左右。 展开更多
关键词 故障诊断 深度学习 自编码 极限学习
在线阅读 下载PDF
VMD能量熵与核极限学习机在滚动轴承故障诊断中的应用 被引量:4
17
作者 秦波 王祖达 +1 位作者 孙国栋 王建国 《中国测试》 北大核心 2017年第5期91-95,共5页
针对滚动轴承信号的不规则特性,致使信号故障特征难提取及难以辨识,为实现滚动轴承故障的智能诊断,提出基于VMD能量熵与核极限学习机(kernel extreme learning machine,K-ELM)的滚动轴承故障诊断方法。首先将测得振动信号进行变分模态分... 针对滚动轴承信号的不规则特性,致使信号故障特征难提取及难以辨识,为实现滚动轴承故障的智能诊断,提出基于VMD能量熵与核极限学习机(kernel extreme learning machine,K-ELM)的滚动轴承故障诊断方法。首先将测得振动信号进行变分模态分解(variational mode decomposition,VMD),利用能量熵进一步提取各模态特征组成高维特征向量集;然后将构建的特征向量作为K-ELM算法的输入,通过训练建立K-ELM滚动轴承故障分类模型。实验结果表明:VMD能够很好地分解轴承振动信号,且K-ELM滚动轴承故障分类模型比SVM、ELM故障分类模型具有更高的精度、更强的稳定性。 展开更多
关键词 滚动轴承 变分模态分解 自动编码 极限学习
在线阅读 下载PDF
基于QPSO正则化极限学习机的轴承故障诊断 被引量:5
18
作者 刘鑫 任海莉 《组合机床与自动化加工技术》 北大核心 2021年第3期36-40,共5页
从复杂的振动信号中提取有效的故障特征并且得到准确的分类结果,建立可靠的故障诊断方法一直都是滚动轴承故障诊断研究中的关键课题。文章提出一种改进的正则化极限学习机(Regularized Extreme Learning Machine,RELM)应用于降噪自动编... 从复杂的振动信号中提取有效的故障特征并且得到准确的分类结果,建立可靠的故障诊断方法一直都是滚动轴承故障诊断研究中的关键课题。文章提出一种改进的正则化极限学习机(Regularized Extreme Learning Machine,RELM)应用于降噪自动编码器(Denoising AutoEncoder,DAE)的故障分类方法。首先,将振动信号经过快速傅里叶变换得到的频域系数作为高维数据,然后利用堆叠降噪自动编码器(Stacked Denoising Autoencoders,SDAE)对高维数据进行学习,提取更具鲁棒性的特征,再将该特征作为RELM的输入进行分类,得到故障诊断模型。针对RELM中正则化参数选取困难问题,采用量子粒子群优化算法(Quantum-behaved particle swarm optimization,QPSO)进行参数优化。实验结果表明,基于SDAE-RELM的诊断方法在泛化性和故障识别率都优于SDAE和其他分类算法结合的故障识别方法。 展开更多
关键词 滚动轴承 降噪自动编码 正则化极限学习 特征提取
在线阅读 下载PDF
分层极限学习机在滚动轴承故障诊断中的应用
19
作者 袁媛 秦波 孙国栋 《制造技术与机床》 北大核心 2017年第4期73-76,81,共5页
针对滚动轴承信号的非线性、非平稳特性,致使轴承状态难识别的问题,提出分层极限学习机(HELM)故障诊断模型。首先采用集合经验模式分解(EEMD)将轴承信号分解为若干个本征模式分量(IMFs),并提取其能量熵值构建特征向量;其次利用自动编码... 针对滚动轴承信号的非线性、非平稳特性,致使轴承状态难识别的问题,提出分层极限学习机(HELM)故障诊断模型。首先采用集合经验模式分解(EEMD)将轴承信号分解为若干个本征模式分量(IMFs),并提取其能量熵值构建特征向量;其次利用自动编码器(AE)对极限学习机的隐含层进行分层,且使隐含层节点的输入权值和阈值满足正交条件;最后将构建的特征向量作为H-ELM算法的输入,通过训练建立H-ELM滚动轴承故障分类模型。实验结果表明:H-ELM滚动轴承故障分类模型比SVM、ELM故障分类模型具有更高的精度、更强的稳定性。 展开更多
关键词 滚动轴承 故障诊断 自动编码 极限学习
在线阅读 下载PDF
基于有序编码的核极限学习顺序回归模型 被引量:3
20
作者 李佩佳 石勇 +1 位作者 汪华东 牛凌峰 《电子与信息学报》 EI CSCD 北大核心 2018年第6期1287-1293,共7页
顺序回归是机器学习领域中介于分类和回归之间的有监督问题。在实际中,许多带有序关系标签的问题都可以被建模成顺序回归问题,因此顺序回归受到众多学者的关注。基于极限学习机(ELM)的算法能有效避免因迭代过程陷入的局部最优解,减少训... 顺序回归是机器学习领域中介于分类和回归之间的有监督问题。在实际中,许多带有序关系标签的问题都可以被建模成顺序回归问题,因此顺序回归受到众多学者的关注。基于极限学习机(ELM)的算法能有效避免因迭代过程陷入的局部最优解,减少训练时间,但基于极限学习机的算法在顺序回归问题上的研究较少。该文将核极限学习机与纠错输出编码相结合,提出了一种基于有序编码的核极限学习顺序回归模型。该模型有效解决了如何在顺序回归中取得良好的特征映射以及如何避免传统极限学习机中隐层节点个数依赖于人工设置的问题。为验证提出模型的有效性,该文在多个顺序回归数据集上进行了测试,测试结果表明,相比于传统ELM模型,该文提出的模型在准确率上平均提升了10.8%,在数据集上预测表现最优,而且获得了最短的训练时间,从而验证了模型的有效性。 展开更多
关键词 纠错输出编码 顺序回归 极限学习 核函数
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部