针对行人轨迹预测研究中仅关注历史轨迹的交互信息,而忽略了终点交互信息的问题,提出一种基于图卷积网络(GCN)和终点诱导(Endpoint Induction)的行人轨迹预测模型GCN-EI。首先,在训练集上使用分类方法学习行人未来可能的加权终点分布;其...针对行人轨迹预测研究中仅关注历史轨迹的交互信息,而忽略了终点交互信息的问题,提出一种基于图卷积网络(GCN)和终点诱导(Endpoint Induction)的行人轨迹预测模型GCN-EI。首先,在训练集上使用分类方法学习行人未来可能的加权终点分布;其次,将可能的终点与它们对应的历史轨迹相连接,并使用基于注意力机制和终点条件的GCN在更长的时间跨度上提取行人的交互特征,同时使用个体特征模块提取行人的内在运动特征;最后通过时间内推卷积预测行人的未来轨迹。在ETH和UCY数据集上对模型进行的测试结果表明,相较于STITD-GCN(SpatioTemporal Interaction and Trajectory Distribution GCN)模型,所提模型在平均位移误差(ADE)和最终位移误差(FDE)上分别下降了4.5%和5.0%;相较于采用分类方法的PCCSNet(Prediction via modality Clustering, Classification and Synthesis Network)模型,在FDE上下降了9.5%。展开更多
文摘针对行人轨迹预测研究中仅关注历史轨迹的交互信息,而忽略了终点交互信息的问题,提出一种基于图卷积网络(GCN)和终点诱导(Endpoint Induction)的行人轨迹预测模型GCN-EI。首先,在训练集上使用分类方法学习行人未来可能的加权终点分布;其次,将可能的终点与它们对应的历史轨迹相连接,并使用基于注意力机制和终点条件的GCN在更长的时间跨度上提取行人的交互特征,同时使用个体特征模块提取行人的内在运动特征;最后通过时间内推卷积预测行人的未来轨迹。在ETH和UCY数据集上对模型进行的测试结果表明,相较于STITD-GCN(SpatioTemporal Interaction and Trajectory Distribution GCN)模型,所提模型在平均位移误差(ADE)和最终位移误差(FDE)上分别下降了4.5%和5.0%;相较于采用分类方法的PCCSNet(Prediction via modality Clustering, Classification and Synthesis Network)模型,在FDE上下降了9.5%。