针对在狭长空间下传统的行人航迹推算(Pedestrian Dead Reckoning,PDR)方法易受传感器扰动与环境干扰,导致传感器数据存在误差累积无法实现行人位置精确估计的问题,结合室内走廊狭长空间典型场景下北斗伪卫星(Pseudosatellite,PL)的信...针对在狭长空间下传统的行人航迹推算(Pedestrian Dead Reckoning,PDR)方法易受传感器扰动与环境干扰,导致传感器数据存在误差累积无法实现行人位置精确估计的问题,结合室内走廊狭长空间典型场景下北斗伪卫星(Pseudosatellite,PL)的信号特征,提出了一种基于北斗信标辅助的PDR狭长空间定位方法。通过提取空间下确定性位置PL观测量数据特征,建立了数据特征与空间位置的指纹位置对应关系。设计了一种北斗PL与PDR组合的拐点检测方法。以北斗信标节点为基础,结合PDR适用范围大与应用性强的特性,将方向信息组合到卡尔曼滤波算法中完成设计。通过实测验证,与PDR定位方法相比,在室内狭长空间情况下组合系统的均方根误差(Root Mean Squared Error,RMSE)定位精度提高了54%。展开更多
针对室内复杂环境下信道状态信息的动态性问题,本文提出了一种面向室内Wi-Fi/行人航迹推算(Pedestrian Dead Reckoning,PDR)融合定位的自适应鲁棒卡尔曼滤波方法.该方法利用自适应鲁棒卡尔曼滤波将Wi-Fi传播模型与PDR定位信息进行多重融...针对室内复杂环境下信道状态信息的动态性问题,本文提出了一种面向室内Wi-Fi/行人航迹推算(Pedestrian Dead Reckoning,PDR)融合定位的自适应鲁棒卡尔曼滤波方法.该方法利用自适应鲁棒卡尔曼滤波将Wi-Fi传播模型与PDR定位信息进行多重融合,推算用户的最优估计位置.同时,基于滤波反馈机制,通过融合定位结果对加权最小二乘法中的路径损耗指数和滤波模型中的观测协方差进行动态修正,保证Wi-Fi传播模型接近于真实室内环境.实验结果表明,该方法能够有效解决室内复杂环境下单一Wi-Fi定位精度低和PDR累积误差的问题,此外,路径损耗指数和观测协方差的实时修正可以提高融合定位系统的定位精度和稳定性.展开更多
为提高室内定位系统精度和跟踪性能以及适应复杂环境,将行人航迹推算(Pedestrian Dead Reckoning,PDR)与双目视觉组合,提出一种双目视觉辅助PDR的组合导航定位方法.该方法通过选取或布置地标建立了地标位置数据表;基于轻量化目标检测实...为提高室内定位系统精度和跟踪性能以及适应复杂环境,将行人航迹推算(Pedestrian Dead Reckoning,PDR)与双目视觉组合,提出一种双目视觉辅助PDR的组合导航定位方法.该方法通过选取或布置地标建立了地标位置数据表;基于轻量化目标检测实现了对地标实时双目测距,保证定位的实时性;利用PDR位置信息得到检出地标类别对应坐标,基于因子图的协同定位和误差估计算法将双目视觉与PDR有效融合,提高了定位精度并抑制PDR累计误差,同时对PDR中航向和单参数模型中单位转换常数进行误差补偿,提高PDR定位精度.实验结果表明,在地标纹理清晰且分布合理情况下,该方法能有效解决室内复杂环境下单一PDR累积误差问题,此外,对航向和单位转换常数实时补偿可提高组合定位系统的定位精度和稳定性.展开更多
文摘针对在狭长空间下传统的行人航迹推算(Pedestrian Dead Reckoning,PDR)方法易受传感器扰动与环境干扰,导致传感器数据存在误差累积无法实现行人位置精确估计的问题,结合室内走廊狭长空间典型场景下北斗伪卫星(Pseudosatellite,PL)的信号特征,提出了一种基于北斗信标辅助的PDR狭长空间定位方法。通过提取空间下确定性位置PL观测量数据特征,建立了数据特征与空间位置的指纹位置对应关系。设计了一种北斗PL与PDR组合的拐点检测方法。以北斗信标节点为基础,结合PDR适用范围大与应用性强的特性,将方向信息组合到卡尔曼滤波算法中完成设计。通过实测验证,与PDR定位方法相比,在室内狭长空间情况下组合系统的均方根误差(Root Mean Squared Error,RMSE)定位精度提高了54%。
文摘针对室内复杂环境下信道状态信息的动态性问题,本文提出了一种面向室内Wi-Fi/行人航迹推算(Pedestrian Dead Reckoning,PDR)融合定位的自适应鲁棒卡尔曼滤波方法.该方法利用自适应鲁棒卡尔曼滤波将Wi-Fi传播模型与PDR定位信息进行多重融合,推算用户的最优估计位置.同时,基于滤波反馈机制,通过融合定位结果对加权最小二乘法中的路径损耗指数和滤波模型中的观测协方差进行动态修正,保证Wi-Fi传播模型接近于真实室内环境.实验结果表明,该方法能够有效解决室内复杂环境下单一Wi-Fi定位精度低和PDR累积误差的问题,此外,路径损耗指数和观测协方差的实时修正可以提高融合定位系统的定位精度和稳定性.
文摘为提高室内定位系统精度和跟踪性能以及适应复杂环境,将行人航迹推算(Pedestrian Dead Reckoning,PDR)与双目视觉组合,提出一种双目视觉辅助PDR的组合导航定位方法.该方法通过选取或布置地标建立了地标位置数据表;基于轻量化目标检测实现了对地标实时双目测距,保证定位的实时性;利用PDR位置信息得到检出地标类别对应坐标,基于因子图的协同定位和误差估计算法将双目视觉与PDR有效融合,提高了定位精度并抑制PDR累计误差,同时对PDR中航向和单参数模型中单位转换常数进行误差补偿,提高PDR定位精度.实验结果表明,在地标纹理清晰且分布合理情况下,该方法能有效解决室内复杂环境下单一PDR累积误差问题,此外,对航向和单位转换常数实时补偿可提高组合定位系统的定位精度和稳定性.