期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于改进SSD算法的地铁场景小行人目标检测
1
作者 张秀再 邱野 沈涛 《计算机研究与发展》 北大核心 2025年第2期397-407,共11页
在地铁场景中,小行人目标由于分辨率低,包含特征信息较少,现阶段目标检测器对此类目标的检测仍具有挑战性.SSD目标检测算法利用金字塔网络的多尺度检测头,能一定程度提高行人目标检测性能,但将其应用于地铁等复杂环境中实现小行人目标... 在地铁场景中,小行人目标由于分辨率低,包含特征信息较少,现阶段目标检测器对此类目标的检测仍具有挑战性.SSD目标检测算法利用金字塔网络的多尺度检测头,能一定程度提高行人目标检测性能,但将其应用于地铁等复杂环境中实现小行人目标检测仍具有一定局限性.针对上述问题,提出一种改进SSD算法以加强地铁场景中小行人目标检测效果.通过构建地铁场景行人目标数据集,标注相应标签,同时进行数据预处理操作;在特征提取网络中加入金字塔特征加强模块,将多分支残差单元、亚像素卷积和特征金字塔相结合获得图像多尺度、多感受野融合特征;利用上下文信息融合模块将图像低层特征与上下文特征相融合,生成扩展特征层用于检测小行人目标;设计一种基于Anchor-free的动态正负样本分配策略,为小行人目标生成最优正样本.实验结果表明:提出的改进SSD算法能有效提高地铁场景小行人目标检测性能,对遮挡严重的小行人目标检测,效果提升更为明显. 展开更多
关键词 行人目标检测 SSD算法 注意力机制 亚像素卷积 多尺度特征融合
在线阅读 下载PDF
导引概率图与显著特征相结合的行人目标检测 被引量:4
2
作者 刘琼 《高技术通讯》 CAS CSCD 北大核心 2016年第5期464-474,共11页
研究了仿生人眼视觉注意机制,采用目标导引概率图作为自上而下的信息,通过调制基于目标显著特征的自下而上信息,实现行人目标检测的方法。首先,对相似场景的目标样本图像提取尺度不变特征变换(SIFT)特征,基于贝叶斯公式,采用高斯混合模... 研究了仿生人眼视觉注意机制,采用目标导引概率图作为自上而下的信息,通过调制基于目标显著特征的自下而上信息,实现行人目标检测的方法。首先,对相似场景的目标样本图像提取尺度不变特征变换(SIFT)特征,基于贝叶斯公式,采用高斯混合模型(GMM)建立目标导引概率模型,利用期望最大(EM)算法和狄利克雷过程(DP)自动估计模型参数;进而,对一副待检测图像,采用已估概率模型计算图像中每一像元的目标似然性,形成导引概率图作为自上而下的信息;同时,针对行人目标,模拟中央-外周机制计算多尺度的肤色特征和竖直方向特征,形成基于目标显著特征的自下而上信息;最后,将两者结合得到候选目标区域,再通过提取候选区域的积分梯度直方图和等价的局部二值模式(LBP)特征,输入到级联支持向量机(SVM)分类器,验证并得到目标检测结果。基于实拍数据库和复旦大学-宾夕法尼亚大学行人数据库的大量实验表明,对概率模型的这种改进能显著提升行人目标预测效果,且检测算法在整体上优于传统检测算法。 展开更多
关键词 视觉注意(VA) 概率引导图 显著特征 行人目标检测(PD)
在线阅读 下载PDF
红外交通场景下遮挡行人目标检测算法研究 被引量:3
3
作者 李明益 贺敬良 +2 位作者 陈勇 赵理 龙震海 《激光与红外》 CAS CSCD 北大核心 2022年第9期1417-1424,共8页
针对交通十字路口等视野盲区往来行人间存在遮挡情况,如何高效准确地检测复杂道路中目标行人具有实际意义。为了实现夜间交汇路口场景行人检测,提出一种基于改进YOLOv5的行人目标检测算法,采用Non-local和PSA模块对YOLOv5原网络的Bottle... 针对交通十字路口等视野盲区往来行人间存在遮挡情况,如何高效准确地检测复杂道路中目标行人具有实际意义。为了实现夜间交汇路口场景行人检测,提出一种基于改进YOLOv5的行人目标检测算法,采用Non-local和PSA模块对YOLOv5原网络的Bottleneck CSP进行改进,能够有效弥补遮挡中行人特征的帧间信息交互过程,增强长程范围通道特征依赖关系。设计更深的160×160检测层和自适应anthor,提升夜间行人检测的边界回归精确度。实验结果表明,针对夜间下交通路口场景,压缩改进后模型对行人检测鲁棒性高,相较于原始算法mAP_0.5和mAP_0.5:0.95值分别提升了14.2%和12.7%,说明所提算法对夜间行人检测的有效性。 展开更多
关键词 深度学习 行人目标检测 YOLOv5 NON-LOCAL PSA Model
在线阅读 下载PDF
基于改进YOLOv5的密集行人检测算法 被引量:2
4
作者 胡倩 皮建勇 +2 位作者 胡伟超 黄昆 王娟敏 《计算机工程》 北大核心 2025年第3期216-228,共13页
针对现有的行人检测方法对于密集行人或小目标行人检测精度低的问题,提出一种基于YOLOv5的综合改进算法模型YOLOv5_Conv-SPD_DAFPN。首先,针对小目标或密集行人的特征信息易丢失这一问题,在骨干网络中引入Conv-SPD网络模块替代原有的跨... 针对现有的行人检测方法对于密集行人或小目标行人检测精度低的问题,提出一种基于YOLOv5的综合改进算法模型YOLOv5_Conv-SPD_DAFPN。首先,针对小目标或密集行人的特征信息易丢失这一问题,在骨干网络中引入Conv-SPD网络模块替代原有的跨步卷积,有效缓解特征信息丢失的问题;其次,针对非相邻特征图不直接融合从而引起特征融合率较低的问题,提出新的双层渐进金字塔网络(DAFPN),提高行人检测的准确性和精度;最后,基于EIoU_Loss和CIoU_Loss引入EfficiCIoU_Loss定位损失函数,以调整和提高帧回归率,促进网络模型更快收敛。模型在CrowdHuman和WiderPerson行人数据集上相比于原YOLOv5模型,mAP@0.5、mAP@0.5∶0.95分别提升了3.9、5.3百分点和2.1、2.1百分点;引入EfficiCIoU_Loss后,模型收敛速度分别提升了11%、33%。这些改进使得基于YOLOv5的密集行人检测在特征信息保留、多尺度融合和损失函数优化等方面都取得了显著进展,提高了其在实际应用中的性能和效率。 展开更多
关键词 密集行人检测 目标行人检测 Conv-SPD网络 双层渐进特征金字塔网络 EfficiCIoU_Loss损失函数
在线阅读 下载PDF
深度学习与图像融合的行人检测算法研究 被引量:2
5
作者 姜柏军 钟明霞 林昊昀 《激光与红外》 CAS CSCD 北大核心 2024年第2期302-306,共5页
为解决智能辅助驾驶技术中可见光摄像机受光照和气候影响而导致行人目标识别困难的问题。通过研究图像融合技术,结合深度卷积神经网络,实现并改进了一种道路行人目标检测算法。方法是利用多源传感器图像融合技术,采用可见光相机与红外... 为解决智能辅助驾驶技术中可见光摄像机受光照和气候影响而导致行人目标识别困难的问题。通过研究图像融合技术,结合深度卷积神经网络,实现并改进了一种道路行人目标检测算法。方法是利用多源传感器图像融合技术,采用可见光相机与红外热成像相机融合的策略,以Faster RCNN算法为基础,从改进网络结构、特征融合、优化模型训练等方面展开研究,对复杂环境下的行人检测与定位跟踪展开研究,提出一种基于图像融合技术和改进的深度卷积神经网络的道路行人目标检测算法。实验结果表明,该算法对复杂气候环境下行人目标检测提高了检测效率和准确率,增加了智能辅助驾驶汽车的安全性。 展开更多
关键词 红外热成像 可见光图像 Faster RCNN 深度卷积神经网络 行人目标检测
在线阅读 下载PDF
基于自适应增殖数据增强与全局特征融合的小目标行人检测 被引量:4
6
作者 艾青林 杨佳豪 崔景瑞 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第10期1933-1944,1976,共13页
针对当前规模的小目标行人数据集较少,传统行人检测模型对小目标检测效果较差的问题,提出一种基于消隐点性质,提出自适应增殖数据增强和全局上下文特征融合的小目标行人检测方法.利用射影几何与消隐点的性质,对图像中的多个目标进行复制... 针对当前规模的小目标行人数据集较少,传统行人检测模型对小目标检测效果较差的问题,提出一种基于消隐点性质,提出自适应增殖数据增强和全局上下文特征融合的小目标行人检测方法.利用射影几何与消隐点的性质,对图像中的多个目标进行复制;通过仿射变换投影到新的位置,生成多个大小与背景合理的小目标样本以完成数据增强.利用跨阶段局部网络与轻量化操作改进沙漏结构,融合坐标注意力机制强化骨干网络.设计全局特征融合颈部网络(GFF-neck),以融合全局特征.实验表明,在经过数据增强后的WiderPerson数据集上,改进算法对行人类别的检测AP值达到了79.6%,在VOC数据集上mAP值达到了80.2%.测试结果表明,当搭建实验测试系统进行实景测试时,所提算法有效提升了小目标行人检测识别精度,并满足实时性要求. 展开更多
关键词 消隐点 数据增强 全局特征融合 目标行人检测 轻量化沙漏结构
在线阅读 下载PDF
基于多尺度特征融合的小目标行人检测 被引量:17
7
作者 张思宇 张轶 《计算机工程与科学》 CSCD 北大核心 2019年第9期1627-1634,共8页
针对SSD当前存在的小目标漏检以及误检问题,结合反卷积与特征融合思想,提出hgSSD模型。将原SSD特征层反卷积后与较浅层特征结合,实现复杂场景下小目标行人检测。为了保留浅层网络特征,提高算法实时性,节省计算资源,hgSSD模型基础网络使... 针对SSD当前存在的小目标漏检以及误检问题,结合反卷积与特征融合思想,提出hgSSD模型。将原SSD特征层反卷积后与较浅层特征结合,实现复杂场景下小目标行人检测。为了保留浅层网络特征,提高算法实时性,节省计算资源,hgSSD模型基础网络使用VGG16,而非更深层的ResNet101。为了加强对小目标的检测,将VGG16中的Conv3_3改进为特征层加入训练。融合后的网络相对于SSD较为复杂,但基本保证实时性,且成功检测到大部分SSD网络漏检的小目标,检测精度相比于SSD模型也有提升。在选择框置信度得分阈值为0.3的情况下,基本检测到SSD漏检小目标。在VOC2007+2012中相对于SSD行人检测的Average Precision值从0.765提升为0.83。 展开更多
关键词 目标行人检测 多尺度预测 特征融合 反卷积神经网络 深度学习
在线阅读 下载PDF
热红外视频监控下行人目标前景区域提取 被引量:6
8
作者 张玉贵 沈柳青 胡海苗 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第9期1721-1729,共9页
在热红外视频监控环境下,针对热红外图像因周围环境温度变化而导致热红外图像灰度值反转的问题,提出了一种通过热红外图像的边界特征和运动特征的融合来提取行人目标前景区域的方法。首先,利用行人目标和周围环境存在的显著性差异来提... 在热红外视频监控环境下,针对热红外图像因周围环境温度变化而导致热红外图像灰度值反转的问题,提出了一种通过热红外图像的边界特征和运动特征的融合来提取行人目标前景区域的方法。首先,利用行人目标和周围环境存在的显著性差异来提取行人目标的边界特征,对所提取的边界特征进行边界填充,并利用热红外行人目标分类器来排除误检目标,从而获取最终的边界特征提取结果;其次,利用相邻帧之间的运动信息来获取行人目标的运动特征,对所获取的运动特征进行形态学处理,并利用热红外行人目标分类器来排除误检目标,从而获取最终的运动特征提取结果;最后,对所获取的边界特征提取结果和运动特征提取结果进行融合来获得最终的检测结果。实验证明,在公开的OSU和LSI热红外图像行人目标检测数据集中,所提方法能够有效地降低环境温度变化的不利影响,并提高行人目标前景区域提取的精度。 展开更多
关键词 边界特征 运动特征 前景区域 行人目标检测 灰度值
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部