Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex...Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex combination of the conditional expectations of PTT-below and PTT-excess travel times. The former was designed as a risk-optimistic travel time index, and the latter was a risk-pessimistic one. Hence, CMTT was able to describe various routing risk-attitudes. The central idea of CMTT was comprehensively illustrated and the difference among the existing travel time indices was analyzed. The Wardropian combined mean traffic equilibrium(CMTE) model was formulated as a variational inequality and solved via an alternating direction algorithm nesting extra-gradient projection process. Some mathematical properties of CMTT and CMTE model were rigorously proved. Finally, a numerical example was performed to characterize the CMTE network. It is founded that that risk-pessimism is of more benefit to a modest(or low) congestion and risk network, however, it changes to be risk-optimism for a high congestion and risk network.展开更多
Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corr...Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.展开更多
Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network cap...Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.展开更多
基金Project(2012CB725403-5)supported by National Basic Research Program of ChinaProject(71131001-2)supported by National Natural Science Foundation of China+1 种基金Projects(2012JBZ005)supported by Fundamental Research Funds for the Central Universities,ChinaProject(201170)supported by the Foundation for National Excellent Doctoral Dissertation of China
文摘Based on the reliability budget and percentile travel time(PTT) concept, a new travel time index named combined mean travel time(CMTT) under stochastic traffic network was proposed. CMTT here was defined as the convex combination of the conditional expectations of PTT-below and PTT-excess travel times. The former was designed as a risk-optimistic travel time index, and the latter was a risk-pessimistic one. Hence, CMTT was able to describe various routing risk-attitudes. The central idea of CMTT was comprehensively illustrated and the difference among the existing travel time indices was analyzed. The Wardropian combined mean traffic equilibrium(CMTE) model was formulated as a variational inequality and solved via an alternating direction algorithm nesting extra-gradient projection process. Some mathematical properties of CMTT and CMTE model were rigorously proved. Finally, a numerical example was performed to characterize the CMTE network. It is founded that that risk-pessimism is of more benefit to a modest(or low) congestion and risk network, however, it changes to be risk-optimism for a high congestion and risk network.
基金Project(2012T50331)supported by China Postdoctoral Science FoundationProject(2008AA092301-2)supported by the High-Tech Research and Development Program of China
文摘Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.
基金Projects(51378119,51578150)supported by the National Natural Science Foundation of China
文摘Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.