期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度条件生成对抗网络血细胞图像分类检测方法 被引量:5
1
作者 陈雪云 黄小巧 谢丽 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第9期1772-1781,共10页
针对血细胞图像中白细胞样本较少和生成细胞图像细节不清晰,导致检测精度较低的问题,提出基于多尺度鉴别器的条件生成对抗网络.该网络通过生成并添加大量逼真的白细胞图像到分类检测网络训练集的方式,实现对血细胞图像的生成和分类检测... 针对血细胞图像中白细胞样本较少和生成细胞图像细节不清晰,导致检测精度较低的问题,提出基于多尺度鉴别器的条件生成对抗网络.该网络通过生成并添加大量逼真的白细胞图像到分类检测网络训练集的方式,实现对血细胞图像的生成和分类检测.在现有条件生成对抗网络真假鉴别器中,引入多尺度卷积核、池化域并在通道上拼接,提升鉴别器对微观细节纹理特征和宏观几何特征的鉴别能力;引入梯度相似性损失函数,以提高生成细胞图像的亮度及边缘清晰度,提升图像的真实感.实验证明,在图像生成阶段,增加多尺度鉴别器和梯度相似性损失函数提高了生成细胞图像的质量;在图像分类检测阶段,对比仅有真实数据训练的情况,增加细胞样本多样性使细胞分类检测的平均精度由90.4%提升至94.7%. 展开更多
关键词 深度学习 血细胞图像分类检测 条件生成对抗网络 梯度相似性 多尺度鉴别器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部