期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
稀疏可变形卷积与高分辨率融合的接触网螺栓病害检测
1
作者 陈永 安卓奥博 张娇娇 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第7期2989-3000,共12页
列车长期运行产生的震动易导致接触网螺栓处于松动、脱落等不良状态,接触网取流异常会严重影响行车安全。针对高速铁路接触网螺栓病害检测时,易受复杂背景干扰及螺栓松动病害难以检测等问题,提出一种稀疏可变形卷积与高分辨率融合的接... 列车长期运行产生的震动易导致接触网螺栓处于松动、脱落等不良状态,接触网取流异常会严重影响行车安全。针对高速铁路接触网螺栓病害检测时,易受复杂背景干扰及螺栓松动病害难以检测等问题,提出一种稀疏可变形卷积与高分辨率融合的接触网螺栓病害检测方法。首先,构建稀疏动态可变形卷积构成的特征提取网络,通过增大感受野范围,来捕捉不同尺度下螺栓的形状特征,加强模型对螺栓小尺寸对象特征的提取能力。然后,设计高分辨率特征金字塔融合模块,将螺栓深层特征和浅层特征的高分辨率特征图进行充分融合,提高多尺度特征图的利用率。其次,提出基于连通域统计的螺栓松动判别方法,通过统计被截断螺栓的连通域个数,完成螺栓松动病害状态检测。最后,由高速铁路接触网螺栓检测试验得出:所提方法可以准确检测螺栓的缺失和松动病害,且具有较高的检测精度,相比改进前Mask R-CNN检测方法准确率增加了41.4个百分点、召回率增加了27.3个百分点、像素精确度提升28.11个百分点、F1-score达83.4%。同时,对接触网螺栓网络模型的检测效率进行试验,较Mask R-CNN的浮点计算效率提升了36.23%。对不同场景下接触网螺栓检测对比试验表明,所提方法具有良好的适应性和精确度,对于螺栓松动和缺失病害检测提供了更为准确的方法,对后期接触网智能化检测具有一定的参考意义。 展开更多
关键词 高铁接触网 螺栓病害检测 稀疏动态可变形卷积 Mask R-CNN 高分辨率融合
在线阅读 下载PDF
基于深度学习的钢桁架桥螺栓病害智能识别方法 被引量:14
2
作者 沈浩 江臣 +2 位作者 陈宇文 王国香 李枝军 《南京工业大学学报(自然科学版)》 CAS 北大核心 2020年第5期608-615,共8页
为了提高钢桁架桥螺栓病害检测和识别效率、完善分析方法,本文在无人机航拍视频的基础上,提出了一种基于深度学习的螺栓病害智能识别方法。通过混合高斯算法、Canny边缘检测、最小包围圆算法等传统图像处理手段对航拍视频进行预处理,实... 为了提高钢桁架桥螺栓病害检测和识别效率、完善分析方法,本文在无人机航拍视频的基础上,提出了一种基于深度学习的螺栓病害智能识别方法。通过混合高斯算法、Canny边缘检测、最小包围圆算法等传统图像处理手段对航拍视频进行预处理,实现钢桁架桥螺栓图像的批量化提取,并通过对螺栓图像采取缩放、旋转、变形等措施拓展螺栓图像的样本数;采用迁移学习引入深度学习模型INCEPTION-V3,经过训练,当螺栓数据测试集上的准确率大于95%时,可满足工程精度需求;并将该方法应用于实际工程,当把0.8设置为计算螺栓病害概率的分割点时,该方法对螺栓病害具有较好的识别效果,同时能够实现自动化、智能化,避免人为主观判断带来的影响。 展开更多
关键词 钢桁架桥 螺栓病害 无人机航拍 图像处理 迁移学习 神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部