期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
IACO-GA-IPSO融合算法AUV三维全局路径规划
1
作者
刘新宇
赵俊涛
+1 位作者
佘莹莹
张英浩
《舰船科学技术》
北大核心
2024年第18期99-105,共7页
为了解决传统蚁群算法收敛速度慢,易陷入局部最优,传统粒子群算法搜索精度差,初始路径不规则等问题,提出一种融合了改进蚁群算法(IACO)、改进粒子群算法(IPSO)和遗传算法(GA)的IACO-GA-IPSO路径规划算法。首先定义三维海洋环境模型,将...
为了解决传统蚁群算法收敛速度慢,易陷入局部最优,传统粒子群算法搜索精度差,初始路径不规则等问题,提出一种融合了改进蚁群算法(IACO)、改进粒子群算法(IPSO)和遗传算法(GA)的IACO-GA-IPSO路径规划算法。首先定义三维海洋环境模型,将工作空间沿Z轴方向划分成水平的栅格平面;其次建立多标准的路径优劣评价模型;最后由融合算法规划路径:IACO算法生成次优种群,GA算法优化种群多样性,IPSO算法快速收敛到全局最优。实验结果表明,融合算法能充分发挥每种算法的优点,克服种群规模和收敛速度的矛盾,优化初始种群,提高全局搜索能力、局部搜索精度和算法运行效率,加快收敛速度并避免陷入局部最优路径。
展开更多
关键词
AUV三维路径规划
融合智能算法
改进蚁群
算法
改进粒子群
算法
遗传
算法
在线阅读
下载PDF
职称材料
题名
IACO-GA-IPSO融合算法AUV三维全局路径规划
1
作者
刘新宇
赵俊涛
佘莹莹
张英浩
机构
武汉第二船舶设计研究所
出处
《舰船科学技术》
北大核心
2024年第18期99-105,共7页
文摘
为了解决传统蚁群算法收敛速度慢,易陷入局部最优,传统粒子群算法搜索精度差,初始路径不规则等问题,提出一种融合了改进蚁群算法(IACO)、改进粒子群算法(IPSO)和遗传算法(GA)的IACO-GA-IPSO路径规划算法。首先定义三维海洋环境模型,将工作空间沿Z轴方向划分成水平的栅格平面;其次建立多标准的路径优劣评价模型;最后由融合算法规划路径:IACO算法生成次优种群,GA算法优化种群多样性,IPSO算法快速收敛到全局最优。实验结果表明,融合算法能充分发挥每种算法的优点,克服种群规模和收敛速度的矛盾,优化初始种群,提高全局搜索能力、局部搜索精度和算法运行效率,加快收敛速度并避免陷入局部最优路径。
关键词
AUV三维路径规划
融合智能算法
改进蚁群
算法
改进粒子群
算法
遗传
算法
Keywords
AUV 3D path planning
fusion intelligent algorithm
improved ant colony algorithm
improved particle swarm algorithm
genetic algorithm
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
IACO-GA-IPSO融合算法AUV三维全局路径规划
刘新宇
赵俊涛
佘莹莹
张英浩
《舰船科学技术》
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部