随着移动智能设备的普及,群智感知得到广泛应用,也面临严重的隐私泄露问题.现有隐私保护方案一般假设第三方服务平台是可信的,而这种假设对应用场景要求较高.基于此,提出了群智感知中一种新的数据融合隐私保护算法ECPPDA(privacy preser...随着移动智能设备的普及,群智感知得到广泛应用,也面临严重的隐私泄露问题.现有隐私保护方案一般假设第三方服务平台是可信的,而这种假设对应用场景要求较高.基于此,提出了群智感知中一种新的数据融合隐私保护算法ECPPDA(privacy preservation data aggregation algorithm based on elliptic curve cryptography).服务器将参与者随机划分成g个簇,并形成簇公钥.簇内节点通过簇公钥加密数据并融合得到簇融合结果数据.服务器通过与簇内成员协同合作得到融合结果原文,由于服务器接收到的是融合密文且密文解密需要簇内所有节点共同协作,因此服务器不能得到单个参与者的数据.此外,通过服务器对簇公钥的更新,能够方便参与者动态加入或失效.实验结果显示ECPPDA具有高安全性、低消耗、低通信、高精度的特点.展开更多
随着我国地膜使用面积的增加和人们对土壤微塑料污染问题的日益关注,大尺度的地膜遥感识别已成为农业生产管理、土壤污染防治的必要手段。针对地膜光谱反射特征的复杂性以及基于单一遥感影像光谱特征识别方法错分率高等问题,该文以河北...随着我国地膜使用面积的增加和人们对土壤微塑料污染问题的日益关注,大尺度的地膜遥感识别已成为农业生产管理、土壤污染防治的必要手段。针对地膜光谱反射特征的复杂性以及基于单一遥感影像光谱特征识别方法错分率高等问题,该文以河北省邯郸市邱县为试验区,利用GF-1数据的空间细节与Sentinel-2数据的光谱信息进行NN Diffuse Pan Sharpening融合,据此建立地膜识别的特征矩阵(NDVI、MNDWI、NDBI、IBI、PSI),基于该特征矩阵可实现自动阈值地膜分层分类识别。多种方法的地膜识别结果精度对比表明:多源光学遥感数据融合方法的总体精度为94.87%,Kappa系数达0.89,显著优于基于单一数据源的深度学习法的精度(93.14%)以及基于传统机器学习分类方法的支持向量机(85.91%)和随机森林分类法(86.78%)的精度;通过与Sentinel-2多光谱影像融合,弥补了GF-1数据光谱分辨率低的缺陷,实现了多源数据在地膜识别中的优势互补,可为相关部门农业规划与管理以及生态环境保护等研究提供大尺度、高精度的地膜分布参考数据。展开更多
高放废物地质处置特别是地下实验室研发过程中的多源数据融合挖掘研究具有重要意义(Wang Ju et al.,2018)。然而,目前阶段尚未实现对研发过程中多源数据的融合挖掘与二次应用。针对上述问题,从地下实验室多源监测数据特点出发,在确定地...高放废物地质处置特别是地下实验室研发过程中的多源数据融合挖掘研究具有重要意义(Wang Ju et al.,2018)。然而,目前阶段尚未实现对研发过程中多源数据的融合挖掘与二次应用。针对上述问题,从地下实验室多源监测数据特点出发,在确定地下实验室多源监测数据模型构建的基础上,结合深度学习技术,初步构建了地下实验室多源监测数据融合技术方法,并初步开展了数据融合设计,为处置库场址评价和安全评价等综合评价工作提供了新的研究思路。展开更多
文摘随着移动智能设备的普及,群智感知得到广泛应用,也面临严重的隐私泄露问题.现有隐私保护方案一般假设第三方服务平台是可信的,而这种假设对应用场景要求较高.基于此,提出了群智感知中一种新的数据融合隐私保护算法ECPPDA(privacy preservation data aggregation algorithm based on elliptic curve cryptography).服务器将参与者随机划分成g个簇,并形成簇公钥.簇内节点通过簇公钥加密数据并融合得到簇融合结果数据.服务器通过与簇内成员协同合作得到融合结果原文,由于服务器接收到的是融合密文且密文解密需要簇内所有节点共同协作,因此服务器不能得到单个参与者的数据.此外,通过服务器对簇公钥的更新,能够方便参与者动态加入或失效.实验结果显示ECPPDA具有高安全性、低消耗、低通信、高精度的特点.
文摘随着我国地膜使用面积的增加和人们对土壤微塑料污染问题的日益关注,大尺度的地膜遥感识别已成为农业生产管理、土壤污染防治的必要手段。针对地膜光谱反射特征的复杂性以及基于单一遥感影像光谱特征识别方法错分率高等问题,该文以河北省邯郸市邱县为试验区,利用GF-1数据的空间细节与Sentinel-2数据的光谱信息进行NN Diffuse Pan Sharpening融合,据此建立地膜识别的特征矩阵(NDVI、MNDWI、NDBI、IBI、PSI),基于该特征矩阵可实现自动阈值地膜分层分类识别。多种方法的地膜识别结果精度对比表明:多源光学遥感数据融合方法的总体精度为94.87%,Kappa系数达0.89,显著优于基于单一数据源的深度学习法的精度(93.14%)以及基于传统机器学习分类方法的支持向量机(85.91%)和随机森林分类法(86.78%)的精度;通过与Sentinel-2多光谱影像融合,弥补了GF-1数据光谱分辨率低的缺陷,实现了多源数据在地膜识别中的优势互补,可为相关部门农业规划与管理以及生态环境保护等研究提供大尺度、高精度的地膜分布参考数据。
文摘高放废物地质处置特别是地下实验室研发过程中的多源数据融合挖掘研究具有重要意义(Wang Ju et al.,2018)。然而,目前阶段尚未实现对研发过程中多源数据的融合挖掘与二次应用。针对上述问题,从地下实验室多源监测数据特点出发,在确定地下实验室多源监测数据模型构建的基础上,结合深度学习技术,初步构建了地下实验室多源监测数据融合技术方法,并初步开展了数据融合设计,为处置库场址评价和安全评价等综合评价工作提供了新的研究思路。