期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于改进蝠鲼觅食优化算法的配电网储能选址定容研究
1
作者 李亚飞 俞易涵 +4 位作者 李展 邹启衡 黄颖 陈嘉栋 孟高军 《可再生能源》 北大核心 2025年第4期542-551,共10页
储能具有灵活性强、响应速度快等特点,可有效缓解新能源接入带来的负荷波动、电压失稳等问题。文章提出了一种基于改进蝠鲼觅食优化算法的双层配电网储能选址定容策略,以储能投资成本、日均电压波动和日均负荷波动最小为目标,建立双层... 储能具有灵活性强、响应速度快等特点,可有效缓解新能源接入带来的负荷波动、电压失稳等问题。文章提出了一种基于改进蝠鲼觅食优化算法的双层配电网储能选址定容策略,以储能投资成本、日均电压波动和日均负荷波动最小为目标,建立双层选址定容模型。引入采用精英反向学习策略和自适应翻滚因子改进的蝠鲼觅食优化算法求解模型,并以接入的新能源IEEE33节点配电网为例,对所提策略进行仿真验证。结果表明,所提选址定容优化方案可显著降低系统电压和负荷波动,有效减少系统投资成本。 展开更多
关键词 新能源 蝠鲼觅食优化算法 双层优化 精英反向学习策略
在线阅读 下载PDF
引入改进蝠鲼觅食优化算法的水下无人航行器三维路径规划 被引量:25
2
作者 黄鹤 李潇磊 +2 位作者 杨澜 王会峰 茹锋 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第7期9-18,共10页
针对复杂环境下传统群体智能优化算法在求解水下无人航行器(UUV)路径规划的过程中存在路径搜索能力不足、易陷入局部最优等问题,提出了一种引入改进蝠鲼觅食优化算法的UUV三维路径规划方法。首先,根据UUV在水下航行时的实际环境,建立相... 针对复杂环境下传统群体智能优化算法在求解水下无人航行器(UUV)路径规划的过程中存在路径搜索能力不足、易陷入局部最优等问题,提出了一种引入改进蝠鲼觅食优化算法的UUV三维路径规划方法。首先,根据UUV在水下航行时的实际环境,建立相关地形模型和威胁源模型;其次,对传统的蝠鲼觅食优化算法进行改进,相关改进包括在初始化过程中加入局部反向学习机制优化种群的位置,提高了种群的多样性;根据每次迭代后种群个体适应度的不同,改进蝠鲼翻滚觅食的翻滚因子S,由此实现一种自适应翻滚,有利于跳出局部最优;同时,在蝠鲼螺旋觅食过程中融合莱维飞行-柯西变异策略,扩大了搜索路径和种群搜索范围,提升了算法寻找全局最优的能力;最后,将改进的蝠鲼觅食优化算法引入到UUV的路径规划中,进行相应的实验模拟。实验结果表明:在地形1中采用改进的蝠鲼觅食优化算法所规划的路径相比于灰狼算法和蝠鲼觅食优化算法分别降低了32.49 km和23.88 km,航迹代价分别降低了9.68和4.04;在地形2中采用改进的蝠鲼觅食优化算法所规划的路径相较于灰狼算法和蝠鲼觅食优化算法分别降低了20.83 km和29.95 km,航迹代价分别降低了10.14和3.18;同时,所提路径规划方法能够使UUV有效地避开障碍物、威胁物等,较大地降低了风险成本,安全性更高。 展开更多
关键词 水下无人航行器 路径规划 蝠鲼觅食优化算法 全局最优
在线阅读 下载PDF
基于自适应蝠鲼觅食优化算法的分布式电源选址定容 被引量:19
3
作者 杨博 俞磊 +3 位作者 王俊婷 束洪春 曹璞璘 余涛 《上海交通大学学报》 EI CAS CSCD 北大核心 2021年第12期1673-1688,共16页
建立了考虑有功功率损耗、电压分布、污染排放、分布式电源(DG)成本以及气象条件的DG选址定容规划模型,其中选址、定容工作分别是一个离散、连续变量,是一个高度非线性、含离散优化变量的复杂模型.因此,应用自适应蝠鲼觅食优化(AMRFO)... 建立了考虑有功功率损耗、电压分布、污染排放、分布式电源(DG)成本以及气象条件的DG选址定容规划模型,其中选址、定容工作分别是一个离散、连续变量,是一个高度非线性、含离散优化变量的复杂模型.因此,应用自适应蝠鲼觅食优化(AMRFO)算法获取最优Pareto解集,其具有丰富多样的搜索机制,个体更新机制以及先进的Pareto解筛选机制,针对该模型能够获得更加优异的高质量解.为回避权重系数人为设置主观性带来的影响,采用基于马氏距离的理想决策点法进行Pareto最优解集决策.最后,基于IEEE 33, 69节点配电网和孤网运行的IEEE 33, 69节点配电网进行仿真分析.研究结果表明:与传统的多目标智能优化算法相比,AMRFO算法能够获得分布更加广泛、均匀的Pareto前沿,在兼顾经济性的同时,配电网的电压分布、有功功率损耗的改善效果显著优于其他算法. 展开更多
关键词 配电网 分布式电源 选址定容 自适应蝠鲼觅食优化算法
在线阅读 下载PDF
基于Halton序列改进蝠鲼算法的K-means图像分割 被引量:5
4
作者 董跃华 李俊 朱东林 《电光与控制》 CSCD 北大核心 2023年第2期91-98,共8页
图像分割在日常生活中扮演着重要角色,传统的K-means图像分割具有随机性且容易陷入局部最优等缺陷,使得分割质量大大降低。为改善这些现象,提出一种基于Halton序列改进蝠鲼觅食优化(HMRFO)算法的K-means图像分割,HMRFO采用Halton序列初... 图像分割在日常生活中扮演着重要角色,传统的K-means图像分割具有随机性且容易陷入局部最优等缺陷,使得分割质量大大降低。为改善这些现象,提出一种基于Halton序列改进蝠鲼觅食优化(HMRFO)算法的K-means图像分割,HMRFO采用Halton序列初始化种群,使得个体位置充分均匀,再引入折射反向学习提升算法的全局搜索能力,最后引入新型的高斯变异策略,减小算法陷入局部最优的概率。在6个基准测试函数中对比了5种算法,验证了HMRFO的有效性及可行性。同时,将其应用于K-means图像分割中,与其他4种算法进行对比,结果显示HMRFO优化K-means具有较好的分割质量及泛化能力。 展开更多
关键词 图像分割 K-MEANS聚类算法 Halton序列 蝠鲼觅食优化算法 折射反向学习 高斯变异
在线阅读 下载PDF
基于特征工程和MRFO-ET的短期风电功率预测 被引量:5
5
作者 康文豪 徐天奇 +2 位作者 王阳光 邓小亮 李琰 《水利水电技术(中英文)》 北大核心 2022年第3期185-194,共10页
为解决风电历史数据挖掘不充分导致的预测精度不高问题,提出一种基于特征工程、蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)和极端随机树(Extremely Randomized Trees,ET)模型的短期风电功率预测方法。首先对时间特征提取... 为解决风电历史数据挖掘不充分导致的预测精度不高问题,提出一种基于特征工程、蝠鲼觅食优化算法(Manta Ray Foraging Optimization,MRFO)和极端随机树(Extremely Randomized Trees,ET)模型的短期风电功率预测方法。首先对时间特征提取小时属性特征,并通过对风速、风向和温度等原始气象特征进行特征创造,从而充分挖掘历史数据的隐含信息,同时通过PCA方法降低数据维度。其次,将降维后的数据输入ET模型,并利用MRFO优化ET模型的参数;最后,以新疆某风电场实测数据进行了算例仿真。结果表明:与5种典型机器学习模型相比,ET模型具有更高的风电预测准确度。与单一ET模型相比,特征工程-ET模型较大程度地提高了预测精度,验证了特征工程方法的有效性。在同等条件下,特征工程-MRFO-ET模型比使用特征工程-ET模型均方根误差和平均绝对误差分别降低了29.46%和36.54%,而拟合优度系数提高了3.97%。与此同时,特征工程-MRFO-ET模型也比特征工程-GA-ET模型和特征工程-PSO-ET模型拥有更高的预测精度。研究成果可为解决短期风电功率预测问题提供了一种新的思路。 展开更多
关键词 短期风电功率预测 特征工程 主成分分析 蝠鲼觅食优化算法 极端随机树 新能源 影响因素 人工智能算法
在线阅读 下载PDF
基于WPD-MRFO-ESN模型的水库来水量时间序列预测 被引量:3
6
作者 崔东文 《华北水利水电大学学报(自然科学版)》 北大核心 2022年第6期10-17,共8页
为提高水库来水量时间序列预测精度,建立了小波包分解(WPD)-蝠鲼觅食优化(MRFO)算法-回声状态网络(ESN)相融合的时间序列预测模型,利用WPD将非平稳水库来水量时间序列分解为若干高频和低频时间序列,以便有效降低来水量时间序列的复杂性... 为提高水库来水量时间序列预测精度,建立了小波包分解(WPD)-蝠鲼觅食优化(MRFO)算法-回声状态网络(ESN)相融合的时间序列预测模型,利用WPD将非平稳水库来水量时间序列分解为若干高频和低频时间序列,以便有效降低来水量时间序列的复杂性。在不同维度条件下选取8个典型函数对MRFO算法进行仿真测试,利用MRFO算法对ESN储备池规模、稀疏度等关键参数进行优化以提高网络训练效率。随后构建了WPD-MRFO-SEN模型和WPD-MRFO-SVM模型,并将这两个模型的预测结果和经经验模态分解(EMD)的EMD-MRFO-ESN模型和EMD-MRFO-SVM模型的结果作对比分析。利用云南省暮底河水库1956—2017年逐月来水量时间序列数据对上述4种模型的结果进行检验。结果表明:MRFO算法具有较好的寻优精度和全局搜索能力;WPD-MRFO-SEN模型对实例后10年120个月来水量时间序列预测的平均绝对百分比误差为2.23%,平均绝对误差为23.3万m3,均方根误差为35.8万m3,预测精度优于WPD-MRFO-SVM模型的,明显优于EMD-MRFO-ESN模型和EMD-MRFO-SVM模型的,具有较高的预测精度。WPD对水库来水量时间序列数据的分解效果优于EMD方法的。 展开更多
关键词 来水量预测 小波包分解 蝠鲼觅食优化算法 回声状态网络 仿真测试
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部