当前国内“血荒”问题比较严峻,血站与用血单位之间存在着血液供不应求的现象。针对这个问题,提出了一种基于改进的蝗虫优化算法的LSTM预测方法,用于对未来的红细胞供应情况进行预测,为血站工作人员在制定采血计划以及制备计划时提供有...当前国内“血荒”问题比较严峻,血站与用血单位之间存在着血液供不应求的现象。针对这个问题,提出了一种基于改进的蝗虫优化算法的LSTM预测方法,用于对未来的红细胞供应情况进行预测,为血站工作人员在制定采血计划以及制备计划时提供有效的指导。该预测模型通过使用长短期记忆网络(Long-Short Term Memory Network,LSTM)来捕捉历史红细胞库存数据之间的潜在规律,以达到对未来的供应情况进行预测的效果。首先,针对蝗虫优化算法容易陷入局部最优、收敛速度较慢的问题,通过加入基于折射原理的反向学习机制与混沌映射,加快蝗虫优化算法的收敛速度,使其具备更强的搜索能力。其次,为提高LSTM的预测性能,将改进的蝗虫优化算法与LSTM相结合,并使用某地区的红细胞库存真实数据作为实验数据,用于验证改进的LSTM预测模型的性能。与标准LSTM相比,所提方法的MAE,MAPE,RMSE分别降低了39.8278,1.10%,55.8191。实验结果证明,提出的方法具有较高的可靠性。展开更多
文摘当前国内“血荒”问题比较严峻,血站与用血单位之间存在着血液供不应求的现象。针对这个问题,提出了一种基于改进的蝗虫优化算法的LSTM预测方法,用于对未来的红细胞供应情况进行预测,为血站工作人员在制定采血计划以及制备计划时提供有效的指导。该预测模型通过使用长短期记忆网络(Long-Short Term Memory Network,LSTM)来捕捉历史红细胞库存数据之间的潜在规律,以达到对未来的供应情况进行预测的效果。首先,针对蝗虫优化算法容易陷入局部最优、收敛速度较慢的问题,通过加入基于折射原理的反向学习机制与混沌映射,加快蝗虫优化算法的收敛速度,使其具备更强的搜索能力。其次,为提高LSTM的预测性能,将改进的蝗虫优化算法与LSTM相结合,并使用某地区的红细胞库存真实数据作为实验数据,用于验证改进的LSTM预测模型的性能。与标准LSTM相比,所提方法的MAE,MAPE,RMSE分别降低了39.8278,1.10%,55.8191。实验结果证明,提出的方法具有较高的可靠性。
文摘针对标准蝗虫优化算法(Grasshopper Optimization Algorithm,GOA)存在的不足,基于对蝗虫活动习性和行为特征的模拟,结合GOA模型,提出一种基于4-乙烯基苯甲醚(4-vinylanisole,4VA)信息素的蝗虫优化算法(Grasshopper Optimization Algorithm Based on 4-vinylanisole Pheromone,VAGOA)。首先,基于4VA是蝗虫的聚集信息素,设计4VA信息素表达式;其次,对不同蝗虫群体(群居型蝗虫和散居型蝗虫)中的个体分别采用不同的搜索策略,在探索和开发之间取得平衡,使算法全局探索能力和局部开发能力均得到有效提升,增强算法的全局寻优能力和规避陷入局部最优的能力。通过12个基准函数的仿真实验,并与GOA、PSO、HCUGOA、SA_CAGOA算法相比较,结果表明VAGOA的全局搜索能力有明显提高,在函数优化中明显具有更快的全局收敛速度及更好的稳定性。