准确评估猪的营养需要量并实现精准营养配方,对于提高饲料资源利用效率及推动我国生猪养殖产业发展具有重要意义。本研究通过挖掘和分析已有文献数据,旨在构建基于分类算法的生长育肥猪营养需要量预测模型,并筛选出最佳模型,以探究分类...准确评估猪的营养需要量并实现精准营养配方,对于提高饲料资源利用效率及推动我国生猪养殖产业发展具有重要意义。本研究通过挖掘和分析已有文献数据,旨在构建基于分类算法的生长育肥猪营养需要量预测模型,并筛选出最佳模型,以探究分类算法在构建更科学合理的猪饲养标准中的可行性。从Web of Science数据库中检索近十年内有关“杜×长×大”猪能量和氨基酸需要量的文献,筛选出包含完整饲粮营养水平与生长性能数据的文献,整理形成初始数据集。将初始数据集中75%的数据划分为训练集,25%的数据划分为验证集,分别使用决策树(DT)、人工神经网络(ANN)和k-最近邻(KNN)3种机器学习算法构建分类模型。结果表明,基于KNN算法构建的分类模型在生长育肥猪营养需要量的预测上表现最佳[k=4,验证集上误分类率(MCR)=0.374]。利用KNN算法可成功构建适用于“杜×长×大”生长育肥猪营养需要量预测的分类模型,为建立更科学的猪饲养标准及精准饲喂技术提供了基础支撑。展开更多
蛋白质是一种具有空间结构的物质。蛋白质结构预测的主要目标是从已有的大规模的蛋白质数据集中提取有效的信息,从而预测自然界中蛋白质的结构。目前蛋白质结构预测实验存在的一个问题是,缺少能够进一步反映出蛋白质空间结构特征的数据...蛋白质是一种具有空间结构的物质。蛋白质结构预测的主要目标是从已有的大规模的蛋白质数据集中提取有效的信息,从而预测自然界中蛋白质的结构。目前蛋白质结构预测实验存在的一个问题是,缺少能够进一步反映出蛋白质空间结构特征的数据集。当前主流的PDB蛋白质数据集虽然是经过实验测得,但没有利用到蛋白质的空间特征,而且存在掺杂核酸数据和部分数据不完整的问题。针对以上问题,从蛋白质的空间结构角度来研究蛋白质的预测。在原始PDB数据集的基础上,提出了河海图结构蛋白质数据集(Hohai Graphic Protein Data Bank,HohaiGPDB)。该数据集以图结构为基础,表达出了蛋白质的空间结构特征。基于传统Transformer网络模型对新的数据集进行了相关的蛋白质结构预测实验,在HohaiGPDB数据集上的预测准确率可以达到59.38%,证明了HohaiGPDB数据集的研究价值。HohaiGPDB数据集可以作为蛋白质相关研究的通用数据集。展开更多
文摘准确评估猪的营养需要量并实现精准营养配方,对于提高饲料资源利用效率及推动我国生猪养殖产业发展具有重要意义。本研究通过挖掘和分析已有文献数据,旨在构建基于分类算法的生长育肥猪营养需要量预测模型,并筛选出最佳模型,以探究分类算法在构建更科学合理的猪饲养标准中的可行性。从Web of Science数据库中检索近十年内有关“杜×长×大”猪能量和氨基酸需要量的文献,筛选出包含完整饲粮营养水平与生长性能数据的文献,整理形成初始数据集。将初始数据集中75%的数据划分为训练集,25%的数据划分为验证集,分别使用决策树(DT)、人工神经网络(ANN)和k-最近邻(KNN)3种机器学习算法构建分类模型。结果表明,基于KNN算法构建的分类模型在生长育肥猪营养需要量的预测上表现最佳[k=4,验证集上误分类率(MCR)=0.374]。利用KNN算法可成功构建适用于“杜×长×大”生长育肥猪营养需要量预测的分类模型,为建立更科学的猪饲养标准及精准饲喂技术提供了基础支撑。
文摘蛋白质是一种具有空间结构的物质。蛋白质结构预测的主要目标是从已有的大规模的蛋白质数据集中提取有效的信息,从而预测自然界中蛋白质的结构。目前蛋白质结构预测实验存在的一个问题是,缺少能够进一步反映出蛋白质空间结构特征的数据集。当前主流的PDB蛋白质数据集虽然是经过实验测得,但没有利用到蛋白质的空间特征,而且存在掺杂核酸数据和部分数据不完整的问题。针对以上问题,从蛋白质的空间结构角度来研究蛋白质的预测。在原始PDB数据集的基础上,提出了河海图结构蛋白质数据集(Hohai Graphic Protein Data Bank,HohaiGPDB)。该数据集以图结构为基础,表达出了蛋白质的空间结构特征。基于传统Transformer网络模型对新的数据集进行了相关的蛋白质结构预测实验,在HohaiGPDB数据集上的预测准确率可以达到59.38%,证明了HohaiGPDB数据集的研究价值。HohaiGPDB数据集可以作为蛋白质相关研究的通用数据集。