蛋白质二级结构预测是公认的生物信息学领域的国际性难题。以基于内在认知机理的知识发现理论(knowledge discovery theory based on inner cognitive mechanism,KDTICM)理论的扩展性研究与数据库中的知识发现(knowledge discovery in d...蛋白质二级结构预测是公认的生物信息学领域的国际性难题。以基于内在认知机理的知识发现理论(knowledge discovery theory based on inner cognitive mechanism,KDTICM)理论的扩展性研究与数据库中的知识发现(knowledge discovery in database*,KDD*)模型为基础,提出一种基于结构序列的多分类算法——SAC(structuralassociation classification),可以有效地解决蛋白质二级结构预测问题。该算法借助设定支持度阈值的精化知识库的方法,其预测准确率能够超过85%。以该算法为核心,构建了一个蛋白质二级预测模型——复合金字塔模型。实验证明,在RS126、CB513I、LP数据集上的预测准确率均超过80%,超过目前已知的国际主流水平。展开更多
蛋白质二级结构预测问题,是生物信息学领域中最为重要的任务之一,历经三十多年的研究,已取得了一些进展,尤其是近来集成预测模型与混合预测模型的引入,为预测精度带来了一定程度的提高,然而其离从二级结构推导三级结构的目标,仍然存在...蛋白质二级结构预测问题,是生物信息学领域中最为重要的任务之一,历经三十多年的研究,已取得了一些进展,尤其是近来集成预测模型与混合预测模型的引入,为预测精度带来了一定程度的提高,然而其离从二级结构推导三级结构的目标,仍然存在很大差距。为了有效提高蛋白质二级结构预测精度,以KDTICM理论的扩展性研究与KDD*模型为基础,使用基于KDD*模型的关联分析蛋白质二级结构预测方法KAAPRO,提出一种基于支持度与可信度的复杂距离度量的CBA(classification based on association)算法,并以该算法为核心构建逐步求精、多层递阶的合成金字塔模型,该模型整体贯穿领域知识,并采用因果细胞自动机选择有效物化属性。在对偏alpha、beta型蛋白质的预测实验中,改进型CBA算法较好地完成了对结构特征不明显氨基酸的预测,获得了较优的预测效果。展开更多
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60661003)江西省自然科学基金(the Natural Science Foundation of Jiangxi Province of China under Grant No.0611060)。
文摘蛋白质二级结构预测是公认的生物信息学领域的国际性难题。以基于内在认知机理的知识发现理论(knowledge discovery theory based on inner cognitive mechanism,KDTICM)理论的扩展性研究与数据库中的知识发现(knowledge discovery in database*,KDD*)模型为基础,提出一种基于结构序列的多分类算法——SAC(structuralassociation classification),可以有效地解决蛋白质二级结构预测问题。该算法借助设定支持度阈值的精化知识库的方法,其预测准确率能够超过85%。以该算法为核心,构建了一个蛋白质二级预测模型——复合金字塔模型。实验证明,在RS126、CB513I、LP数据集上的预测准确率均超过80%,超过目前已知的国际主流水平。
文摘蛋白质二级结构预测问题,是生物信息学领域中最为重要的任务之一,历经三十多年的研究,已取得了一些进展,尤其是近来集成预测模型与混合预测模型的引入,为预测精度带来了一定程度的提高,然而其离从二级结构推导三级结构的目标,仍然存在很大差距。为了有效提高蛋白质二级结构预测精度,以KDTICM理论的扩展性研究与KDD*模型为基础,使用基于KDD*模型的关联分析蛋白质二级结构预测方法KAAPRO,提出一种基于支持度与可信度的复杂距离度量的CBA(classification based on association)算法,并以该算法为核心构建逐步求精、多层递阶的合成金字塔模型,该模型整体贯穿领域知识,并采用因果细胞自动机选择有效物化属性。在对偏alpha、beta型蛋白质的预测实验中,改进型CBA算法较好地完成了对结构特征不明显氨基酸的预测,获得了较优的预测效果。