期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
基于多输出LSTM神经网络的深基坑侧移预测 被引量:4
1
作者 周志勇 吕东 +2 位作者 王耿鑫 朱耀民 申文明 《浙江工业大学学报》 CAS 北大核心 2024年第4期443-449,共7页
深基坑挡土墙是工程实践中常用的支护结构,对限制深基坑变形和预防工程事故起着重要的作用。深基坑工程往往会布置多个不同深度的测点,然而现有研究大多只预测了单个测点的未来侧移,浪费了其余测点的监测数据。以杭州市某深基坑工程为背... 深基坑挡土墙是工程实践中常用的支护结构,对限制深基坑变形和预防工程事故起着重要的作用。深基坑工程往往会布置多个不同深度的测点,然而现有研究大多只预测了单个测点的未来侧移,浪费了其余测点的监测数据。以杭州市某深基坑工程为背景,建立基于贝叶斯优化的多输出长短期记忆(Long short term memory,LSTM)神经网络模型,在保证模型最优性能的情况下,采用历史监测数据输入对深基坑的多个测点进行预测,并单独提取墙体每日最大侧移预测值进行分析。研究结果表明:结合贝叶斯优化的多输出LSTM神经网络模型在深基坑墙体多测点侧移预测方面展现出理想的预测效果,模型R^(2)达到了0.94,每日最大侧移预测值的模型R^(2)为0.91,略低于整体预测。 展开更多
关键词 深基坑 挡土墙 侧移 多输出lstm神经网络 贝叶斯优化
在线阅读 下载PDF
基于SO-BP神经网络的温室环境预测模型研究 被引量:3
2
作者 张万帆 任力生 王芳 《中国农机化学报》 北大核心 2024年第8期94-99,106,共7页
由于温室环境中温湿度的调控过程存在滞后响应特性,预测温室环境变化趋势是构建温室精准控制系统中不可或缺的一部分。针对传统神经网络算法在温室预测方面精度不足等问题,提出一种基于蛇优化算法(snake optimizer,SO)优化BP神经网络的... 由于温室环境中温湿度的调控过程存在滞后响应特性,预测温室环境变化趋势是构建温室精准控制系统中不可或缺的一部分。针对传统神经网络算法在温室预测方面精度不足等问题,提出一种基于蛇优化算法(snake optimizer,SO)优化BP神经网络的温室环境预测方法。试验结果表明,该方法预测15 min内温度的决定系数R^(2)为0.9564,比BP模型、HHO-BP模型分别提高14.87%、2.19%,平均绝对误差MAE、平均绝对百分比误差MAPE、均方根误差RMSE值分别为0.4813、2.2378、0.6729;预测15 min内湿度的R^(2)为0.9821,比BP模型、HHO-BP模型分别提高13.12%、2.37%,预测指标MAE、MAPE、RMSE值分别为1.7090、2.5842、2.2838。该模型的预测结果较理想,可用于温室温湿度预测。 展开更多
关键词 温室环境 温湿度预测 精准控制系统 优化算法 神经网络
在线阅读 下载PDF
基于多尺度特征提取-改进天鹰算法-长短时神经网络的有载分接开关故障诊断方法 被引量:1
3
作者 龚禹璐 崔龙飞 +5 位作者 王典浪 陈静 须雷 皮天满 谢正波 杨继翔 《现代电力》 北大核心 2024年第4期793-800,共8页
为实现有载分接开关(on-load tap changer)在复合故障下的精准故障诊断,提出一种基于多尺度特征提取与改进天鹰算法(improved aquila optimizer,IAO)和长短时记忆神经网络(long short-term memory networks,LSTM)的变压器OLTC故障诊断... 为实现有载分接开关(on-load tap changer)在复合故障下的精准故障诊断,提出一种基于多尺度特征提取与改进天鹰算法(improved aquila optimizer,IAO)和长短时记忆神经网络(long short-term memory networks,LSTM)的变压器OLTC故障诊断方法。首先提取OLTC振动信号时域尺度、频域尺度和能量熵尺度特征组成特征向量;通过混合初始化策略和精英解保留策略对天鹰优化算法(aquila optimizer,AO)进行改进,以提高收敛性;利用改进天鹰算法对LSTM的隐含层节点数和学习率进行优化,得到最优LSTM模型;以单一故障和复合故障融合特征向量为输入,以故障状态作为输出,在最优网络模型中训练,完成后进行故障诊断。结果表明,文中所述方法平均准确率达97.2%,适用于OLTC的故障诊断。 展开更多
关键词 有载分接开关 多尺度特征提取 优化lstm神经网络 改进天鹰算法 故障诊断
在线阅读 下载PDF
一种融合GA和LSTM的边坡变形预测优化网络模型及其应用 被引量:6
4
作者 肖海平 王顺辉 +2 位作者 陈兰兰 范永超 万俊辉 《大地测量与地球动力学》 CSCD 北大核心 2024年第5期491-496,共6页
考虑到BP神经网络模型忽略边坡监测数据存在的时间相关性,以及LSTM模型由于超参数选择存在主观性而易陷入局部最优等问题,提出一种基于遗传算法和长短期记忆网络(GA-LSTM)相结合的边坡变形预测模型,以发挥遗传算法全局搜索能力和LSTM预... 考虑到BP神经网络模型忽略边坡监测数据存在的时间相关性,以及LSTM模型由于超参数选择存在主观性而易陷入局部最优等问题,提出一种基于遗传算法和长短期记忆网络(GA-LSTM)相结合的边坡变形预测模型,以发挥遗传算法全局搜索能力和LSTM预测时序数据的优势。以海明矿业露天采场边坡为研究对象,分别采用BP神经网络模型、LSTM网络模型以及GA-LSTM网络模型对边坡监测点GNSS49变形进行预测分析,并对比各模型达到收敛条件的时间。结果表明,GA-LSTM模型与其他模型达到同一收敛条件的时间差异不大,GA-LSTM模型的拟合准确度在0.1~0.2 mm,是LSTM神经网络模型的5~7倍,是BP神经网络模型的10~20倍,具有较高的精度和稳定性,其预测值与实际监测数据基本一致,可为矿山边坡的安全生产、管理以及决策控制提供科学依据。 展开更多
关键词 露天矿边坡 遗传算法 lstm神经网络 优化网络模型 变形预测
在线阅读 下载PDF
基于TDCSO优化CNN-Bi-LSTM网络的井底钻压预测方法 被引量:1
5
作者 张剑 肖禹涵 +1 位作者 周忠易 杨俊龙 《石油钻探技术》 CAS CSCD 北大核心 2024年第5期82-90,共9页
为了准确预测井底钻压,提高钻井效率、降低钻井成本,建立了融合双向长短期记忆网络(Bi-LSTM)和卷积神经网络(CNN)的混合模型。采用三角函数驱动的粒子群优化(TDCSO)方法对模型进行超参数优化,以提高预测钻压的精度;采用美国犹他州FORGE ... 为了准确预测井底钻压,提高钻井效率、降低钻井成本,建立了融合双向长短期记忆网络(Bi-LSTM)和卷积神经网络(CNN)的混合模型。采用三角函数驱动的粒子群优化(TDCSO)方法对模型进行超参数优化,以提高预测钻压的精度;采用美国犹他州FORGE 58-32井和FORGE 58-62井的2个公开数据集对建立的模型进行验证,并采用平均绝对误差、均方根误差、决定系数和均方误差等指标进行模型性能评估。研究结果表明,所提出TDCSO-CNN-Bi-LSTM模型平均绝对误差、均方误差和均方根误差等3个关键性能指标较好,其中决定系数大于0.980,明显优于现有的LSTM、GRU、CNN-LSTM、CNN-Bi-LSTM等方法。研究表明,所提出的TDCSO-CNN-Bi-LSTM模型在井底钻压预测方面具有出色的准确性,能够实现实时监测,并与自动钻进系统集成,实现对钻压的精准控制,不仅提高了钻井效率,还降低了钻井成本,对未来的钻井作业具有重要的实际应用价值。 展开更多
关键词 井底钻压 lstm 神经网络 优化算法 模型优化
在线阅读 下载PDF
基于贝叶斯优化LSTM神经网络的飞机货舱火源定位
6
作者 张伟 常本强 +1 位作者 杨旭 熊枭 《北京航空航天大学学报》 2025年第9期2979-2986,共8页
民航飞机货舱火灾多发于高空低温低压的环境,对飞机安全飞行造成了巨大的威胁。为快速定位货舱火灾源点和采取针对性区域灭火措施,提出一种基于贝叶斯优化(BO)的长短期记忆(LSTM)神经网络火源定位模型(BO-LSTM)。该模型使用LSTM神经网... 民航飞机货舱火灾多发于高空低温低压的环境,对飞机安全飞行造成了巨大的威胁。为快速定位货舱火灾源点和采取针对性区域灭火措施,提出一种基于贝叶斯优化(BO)的长短期记忆(LSTM)神经网络火源定位模型(BO-LSTM)。该模型使用LSTM神经网络充分挖掘多种火灾特征时序数据(烟雾、温度、CO浓度)与火灾源点的时空关联特性,同时采用贝叶斯算法搜寻LSTM神经网络的最优超参数组合以提高模型的鲁棒性和准确性。通过仿真研究验证BO-LSTM模型,使用Pyrosim火灾模拟软件以1∶1比例建立了8个常用民航飞机货舱模型,并在每个模型中随机选取10个火源点进行低温低压环境的火灾仿真。实验结果表明:所建模型预测火源中心点距离实际火源中心点的直线距离误差皆小于0.1m,预测火源二维坐标皆处于真实火源的范围内。贝叶斯优化过的LSTM神经网络极大提高了传统LSTM神经网络的性能,适用于低温低压状态下的飞机货舱火源定位。 展开更多
关键词 飞机货舱 低温低压 火源定位 贝叶斯优化 lstm神经网络 Pyrosim软件
在线阅读 下载PDF
基于改进鲸鱼算法优化LSTM的粮油温度预测 被引量:1
7
作者 史红伟 叶明昊 +1 位作者 谢酶 武士奇 《陕西科技大学学报》 北大核心 2024年第6期208-214,共7页
针对粮油温度预测问题,提出一种基于改进鲸鱼优化算法(IWOA)优化长短时记忆神经网络(LSTM)的粮油温度预测模型.针对传统WOA算法收敛速度慢和容易陷入局部最优等问题,提出了应用Logistic混沌映射、Levy飞行策略等方法来提升WOA算法的种... 针对粮油温度预测问题,提出一种基于改进鲸鱼优化算法(IWOA)优化长短时记忆神经网络(LSTM)的粮油温度预测模型.针对传统WOA算法收敛速度慢和容易陷入局部最优等问题,提出了应用Logistic混沌映射、Levy飞行策略等方法来提升WOA算法的种群丰富度和搜索能力的方法.采用真实粮油温度值与多种模型预测值对比,IWOA-LSTM的MAE、RMSE比其他模型分别降低了13.64%~68.33%、6.06%~60.39%,R^(2)提高了1.65%~14.27%.结果表明,本文所提模型可以准确预测未来粮油温度变化趋势. 展开更多
关键词 粮油温度预测 鲸鱼优化算法(WOA) 长短时记忆神经网络(lstm)
在线阅读 下载PDF
融合海鸥算法及LSTM的燃料电池城市客车车速预测研究
8
作者 何锋 陈鹏 +2 位作者 刘勇 边东生 龚成平 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期29-35,共7页
针对燃料电池城市客车车速预测精度低的问题,提出改进海鸥优化算法(ISOA)和长短期记忆神经网络(LSTM)相结合的车速预测模型。以标准工况驾驶循环数据库为训练集,以中国典型城市公交循环工况为测试集,使用引入莱维飞行、柯西变异等策略... 针对燃料电池城市客车车速预测精度低的问题,提出改进海鸥优化算法(ISOA)和长短期记忆神经网络(LSTM)相结合的车速预测模型。以标准工况驾驶循环数据库为训练集,以中国典型城市公交循环工况为测试集,使用引入莱维飞行、柯西变异等策略改进后的海鸥优化算法,确定LSTM最优参数,建立基于城市道路的ISOA-LSTM燃料电池城市客车车速预测模型,与LSTM模型、SOA-LSTM模型和GWO-LSTM模型进行对比。结果表明:基于ISOA-LSTM的车速预测模型的均方根误差为1.965,平均绝对误差为1.570,决定系数为0.983,预测精度更高。 展开更多
关键词 燃料电池城市客车 车速预测 改进海鸥优化算法 lstm神经网络
在线阅读 下载PDF
基于改进天鹰优化算法优化LSTM的滚动轴承故障诊断方法 被引量:2
9
作者 王妍 王新发 +2 位作者 王延峰 顾晓光 孙军伟 《振动与冲击》 EI CSCD 北大核心 2024年第23期144-154,共11页
针对天鹰优化(Aquila optimizer,AO)算法容易陷入局部最优,长短时记忆(long short-term memory,LSTM)神经网络容易受参数影响的问题,提出了一种基于改进天鹰优化(improved Aquila optimizer,IAO)算法优化LSTM神经网络的模型,并将其应用... 针对天鹰优化(Aquila optimizer,AO)算法容易陷入局部最优,长短时记忆(long short-term memory,LSTM)神经网络容易受参数影响的问题,提出了一种基于改进天鹰优化(improved Aquila optimizer,IAO)算法优化LSTM神经网络的模型,并将其应用于滚动轴承的故障诊断中。首先,引入超立方策略优化了种群初始质量,设计自适应螺旋策略平衡了AO算法的全局搜索和局部搜索能力,并通过利用高斯变异策略增强了AO算法跳出局部最优的能力。然后,将所提IAO算法对LSTM的权值和阈值进行优化,构建了基于IAO-LSTM网络的滚动轴承故障诊断模型。最后,凯斯西储大学(Case Western Reserve University,CWRU)轴承数据集和帕德伯恩大学(Paderborn University,PU)轴承数据集的试验结果表明:与其他故障诊断模型相比,IAO优化后的LSTM模型的分类准确率更高,能有效识别滚动轴承的各种故障类型。 展开更多
关键词 故障诊断 天鹰优化(AO)算法 自适应螺旋搜索 超立方体策略 长短时记忆(lstm)神经网络
在线阅读 下载PDF
基于综合相似日选取的SO-CNN-LSTM光伏功率预测模型研究 被引量:1
10
作者 宋煜 许野 +2 位作者 刘锋平 王旭 李薇 《太阳能学报》 北大核心 2025年第4期301-312,共12页
针对当前光伏发电功率预测的相似日选取标准单一、形状相似判定结果有误、组合预测模型的参数选取不合理导致的预测精度偏低问题,创新性地提出一种利用综合相似度选取相似日、蛇优化算法(SO)优化卷积神经网络-长短期记忆网络(CNN-LSTM)... 针对当前光伏发电功率预测的相似日选取标准单一、形状相似判定结果有误、组合预测模型的参数选取不合理导致的预测精度偏低问题,创新性地提出一种利用综合相似度选取相似日、蛇优化算法(SO)优化卷积神经网络-长短期记忆网络(CNN-LSTM)模型关键参数组合的日前光伏发电功率组合预测模型。首先使用皮尔逊相关系数法选取关键气象因素,然后使用欧式距离相似和孪生图形相似的综合相似日选取法选定待预测日的相似日和生成高质量的模型训练样本集,最终构建基于蛇优化算法的CNN-LSTM日前光伏出力组合预测模型。以春季为例,相较于单一的欧式距离相近和孪生形状相似的相似日选取方法,基于综合相似日选取的SO-CNN-LSTM预测模型的平均绝对误差(MAE)分别降低0.15和0.13;另外,与基于综合相似日选取的LSTM和CNN-LSTM两种模型相比,SO-CNN-LSTM模型在夏季、秋季和冬季的MAE值分别降低0.73和0.15、0.36和0.24,以及0.42和0.15。 展开更多
关键词 综合相似度 优化算法 卷积神经网络 长短期记忆网络 光伏发电
在线阅读 下载PDF
基于BO-LSTM的排露沟流域气象水文演变分析及径流预测模型建立 被引量:1
11
作者 康永德 陈佩 +3 位作者 许尔文 任小凤 敬文茂 张娟 《水利水电技术(中英文)》 北大核心 2025年第4期1-11,共11页
【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温... 【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温对径流量变化的影响,并建立了BO-LSTM排露沟流域径流预测模型。【结果】结果显示:(1)2000—2019年排露沟流域降水、气温和径流呈现两段式的上升趋势,分界点在2010年,降水和径流,第一阶段上升趋势均高于第二阶段,斜率依次为10.74、3.16;气温则相反,第二阶段高于第一阶段,斜率为0.11。并且降水、气温和径流的MK突变检验z值均大于0。(2)降水量在5—10月对径流量变化的贡献率较大;而气温在12月—次年4月对径流变化的贡献率大。(3)排露沟流域气温主要有3 a、14 a两个主周期,其中第一主周期为14 a;径流存在19 a、9 a和3 a三个主周期,其中第一主周期为19 a;降水主要存在4 a、11 a两个主周期,第一主周期为11 a。(4)BO-LSTM排露沟径流预测模型,精度R 2为0.63,均方根误差为14047 m 3,模型在径流量较小月份的预测精度大于径流量较大的月份。【结论】近20年来排露沟流域的降水、气温及径流均呈上升趋势;排露沟流域径流、降水及气温均存在明显的周期性;气温和降水是影响排露沟流域径流的重要因素;径流预测模型可以适用于排露沟流域。上述研究结果为祁连山水资源效应研究和内陆河流域水资源预测提供科学支撑。 展开更多
关键词 水文 水资源 径流演变 排露沟流域 径流预测 神经网络 lstm(Long Short-Term Memory)模型 贝叶斯优化算法
在线阅读 下载PDF
基于WOA-IGWO-LSTM的作业车间实时调度
12
作者 郑华丽 魏光艳 +2 位作者 孙东 王明君 叶春明 《机床与液压》 北大核心 2025年第2期54-63,共10页
针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特... 针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特征进行降维,以提高模型泛化能力和准确性。引入非线性收敛因子设计一种改进灰狼算法(IGWO)用于调节LSTM参数,提高算法实用性。最后,通过对比试验验证了WOA、IGWO以及WOA-IGWO-LSTM的有效性,并利用工业案例数据验证了WOA-IGWO-LSTM对于解决作业车间实时调度问题的有效性和可行性。 展开更多
关键词 长短期记忆(lstm)神经网络 鲸鱼优化算法(WOA) 改进灰狼算法 作业车间实时调度
在线阅读 下载PDF
基于SO-LSTM的立柱液压系统故障诊断方法研究 被引量:3
13
作者 郗涛 董蒙蒙 +1 位作者 王莉静 张建业 《机床与液压》 北大核心 2024年第8期196-201,共6页
针对目前无法快速、准确地诊断矿用立柱液压系统故障等问题,在建立仿真模型分析单一故障机制的基础上,基于优化算法提出多种故障诊断方法。将立柱物理模块与立柱液压系统模块相结合,建立立柱液压系统仿真模型;基于Simulink分析单一故障... 针对目前无法快速、准确地诊断矿用立柱液压系统故障等问题,在建立仿真模型分析单一故障机制的基础上,基于优化算法提出多种故障诊断方法。将立柱物理模块与立柱液压系统模块相结合,建立立柱液压系统仿真模型;基于Simulink分析单一故障的影响,基于蛇优化LSTM神经网络建立诊断模型;最后,根据实际数据进行模型的实例验证。结果表明:蛇优化LSTM模型对液压立柱故障仿真数据识别率达到99.5%,对液压立柱故障真实数据识别率达到97%,与模型仿真数据的预测精度仅相差2.5%,预测精度较高,达到了预期目标。 展开更多
关键词 立柱液压系统 故障诊断 蛇优化lstm神经网络
在线阅读 下载PDF
基于HHO优化的时空水质预测模型 被引量:3
14
作者 李顺勇 张睿轩 谭红叶 《现代电子技术》 北大核心 2024年第2期176-182,共7页
我国水资源现状不容乐观,提高水质预测模型精度对水资源质量监测具有重要意义。为捕捉水质指标时序数据非线性变化趋势,水质指标多基于神经网络模型进行预测。但是现有模型忽略了河流流向,没有考虑上游监测点水质对下游水质的影响;同时... 我国水资源现状不容乐观,提高水质预测模型精度对水资源质量监测具有重要意义。为捕捉水质指标时序数据非线性变化趋势,水质指标多基于神经网络模型进行预测。但是现有模型忽略了河流流向,没有考虑上游监测点水质对下游水质的影响;同时现有模型多基于启发式优化算法中的粒子群算法调整神经网络的超参数,但该优化算法仍需设置较多超参数,而参数选取不当容易使模型陷入局部最优。为此,建立了时空水质预测模型(WT‐CNN‐LSTM‐HHO),利用哈里斯鹰优化算法(HHO),基于上游水质数据预测下游的氮、磷和溶解氧水质指标。实验结果显示,本文所提出的模型对水质预测性能有明显提升,可以实现设置较少超参数而达到较高的水质预测精度。 展开更多
关键词 时空水质预测 哈里斯鹰优化算法 lstm神经网络 时间序列 CNN‐lstm 小波降噪
在线阅读 下载PDF
一种基于SO-CNN模型的可见光室内定位优化方法 被引量:1
15
作者 陈静 刘旋 +2 位作者 王金元 章永龙 朱俊武 《电讯技术》 北大核心 2024年第5期702-709,共8页
针对基于机器学习的可见光室内定位方法存在的手工调参、定位精度低等问题,结合蛇优化(Snake Optimization,SO)算法的寻优能力与卷积神经网络(Convolutional Neural Network,CNN)处理复杂非线性问题的能力,提出了一种基于SO-CNN模型的... 针对基于机器学习的可见光室内定位方法存在的手工调参、定位精度低等问题,结合蛇优化(Snake Optimization,SO)算法的寻优能力与卷积神经网络(Convolutional Neural Network,CNN)处理复杂非线性问题的能力,提出了一种基于SO-CNN模型的可见光室内定位优化方法。在考虑多径效应影响的情况下,采集每个位置点处的信噪比和对应位置坐标构建指纹数据库,对SO-CNN模型进行训练和测试,以得到最佳定位模型。实验结果表明,在5 m×5 m×3 m的房间中,与未经优化的CNN相比,该方法的平均定位误差降低了35.13%;与反向传播神经网络(Back Propagation Neural Network,BPNN)、多层感知器(Multilayer Perceptron,MLP)、SO-MLP相比,该方法的平均定位误差分别降低了54.75%,48.08%,37.01%。 展开更多
关键词 可见光室内定位(VLIP) 指纹定位法 优化算法 卷积神经网络
在线阅读 下载PDF
基于粒子群优化LSTM的股票预测模型 被引量:98
16
作者 宋刚 张云峰 +1 位作者 包芳勋 秦超 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第12期2533-2542,共10页
为了提高股票时间序列预测精度,增强预测模型结构参数可解释性,提出一种基于自适应粒子群优化(PSO)的长短期记忆(LSTM)股票价格预测模型(PSO-LSTM),该模型在LSTM模型的基础上进行改进和优化,因此擅长处理具有长期依赖关系的、复杂的非... 为了提高股票时间序列预测精度,增强预测模型结构参数可解释性,提出一种基于自适应粒子群优化(PSO)的长短期记忆(LSTM)股票价格预测模型(PSO-LSTM),该模型在LSTM模型的基础上进行改进和优化,因此擅长处理具有长期依赖关系的、复杂的非线性问题。通过自适应学习策略的PSO算法对LSTM模型的关键参数进行寻优,使股票数据特征与网络拓扑结构相匹配,提高股票价格预测精度。实验分别以沪市、深市、港股股票数据构建了PSO-LSTM模型,并对该模型的预测结果与其他预测模型进行比较分析。结果表明,基于自适应PSO的LSTM股票价格预测模型不但提高了预测准确度,而且具有普遍适用性。 展开更多
关键词 粒子群优化(PSO) lstm神经网络 自适应 股票价格预测 预测精度
在线阅读 下载PDF
基于VMD-LSTM-IPSO-GRU的电力负荷预测 被引量:5
17
作者 肖威 方娜 邓心 《科学技术与工程》 北大核心 2024年第16期6734-6741,共8页
为了挖掘电力负荷数据中的潜藏信息,提高短期负荷预测的精度,针对电力负荷强非线性、非平稳性等特点,提出一种基于变分模态分解(variational mode decomposition,VMD)、长短时记忆神经网络(long-term and short-term memory network,LS... 为了挖掘电力负荷数据中的潜藏信息,提高短期负荷预测的精度,针对电力负荷强非线性、非平稳性等特点,提出一种基于变分模态分解(variational mode decomposition,VMD)、长短时记忆神经网络(long-term and short-term memory network,LSTM)、改进的粒子群算法(improve particle swarm optimization,IPSO)和门控循环单元(gated recurrent unit neural network,GRU)的混合预测模型。首先,使用相关性分析确定输入因素,再将负荷数据运用VMD算法结合样本熵分解为一系列本征模态分量(intrinsic mode fuction,IMF)和残差量,进而合理地确定分解层数和惩罚因子;其次,根据过零率将这些量划分为低频和高频,低频分量使用LSTM网络,高频分量利用IPSO-GRU网络分别进行预测;最后,将预测结果重构得到电力负荷的最终结果。仿真结果表明:相对于其他模型,所提混合模型可有效的提取模态特征,具有更高的预测精度。 展开更多
关键词 短期负荷预测 变分模态分解(VMD) 长短时记忆神经网络(lstm) 门控循环单元(GRU) 改进的粒子群优化算法(IPSO)
在线阅读 下载PDF
基于GRA-GWO-LSTM的多元负荷协同预测方法
18
作者 李文 卜凡鹏 +2 位作者 王坤 高宇琪 时国华 《科学技术与工程》 北大核心 2024年第36期15518-15525,共8页
精准的多元负荷预测有助于综合能源系统的合理规划和优化运行。针对多元负荷预测时输入参数难确定和模型网络参数较难合理设置的问题,提出一种建筑电、冷、热多元负荷协同预测方法。首先,考虑到不同输入参数对多元负荷的影响,采用灰色... 精准的多元负荷预测有助于综合能源系统的合理规划和优化运行。针对多元负荷预测时输入参数难确定和模型网络参数较难合理设置的问题,提出一种建筑电、冷、热多元负荷协同预测方法。首先,考虑到不同输入参数对多元负荷的影响,采用灰色关联度分析法(grey relation analysis,GRA)计算各输入参数与负荷间的相关性,选择灰色关联度大于0.6的参数作为模型输入;同时利用灰狼优化算法(grey wolf optimizer,GWO)对长短时记忆神经网络(long short-term memory,LSTM)中的关键网络参数进行优化,建立GRA-GWO-LSTM多元负荷预测模型;最后,以亚利桑那州立大学为例,通过与单一神经网络模型和混合神经网络模型GWO-LSTM对比,所提预测模型在电、冷、热负荷长期预测上具有更高的预测精度,较LSTM模型和GWO-LSTM模型的平均绝对百分比误差(mean absolute percentage error,MAPE)分别降低了31.64%和23.47%,且其对短期负荷预测也具有良好预测性能,可用于指导综合能源系统的规划和智能化运行。 展开更多
关键词 多元负荷预测 深度学习 长短时记忆神经网络(lstm) 灰狼优化算法(GWO) 灰色关联度分析法(GRA)
在线阅读 下载PDF
基于多目标优化的燃料电池汽车实时能量管理策略 被引量:2
19
作者 于坤杰 王思雨 +2 位作者 杨朵 符汉文 廖粤峰 《郑州大学学报(工学版)》 CAS 北大核心 2024年第2期80-88,共9页
为了降低混合动力系统的燃料消耗并延缓动力元件的老化,提出了一种基于多目标优化和路况分类的能量管理策略(EMS)。首先,构建了燃料电池与锂电池的电气模型,并引入了等效氢耗模型和燃料电池老化模型。其次,设计了基于规则的多模式EMS,... 为了降低混合动力系统的燃料消耗并延缓动力元件的老化,提出了一种基于多目标优化和路况分类的能量管理策略(EMS)。首先,构建了燃料电池与锂电池的电气模型,并引入了等效氢耗模型和燃料电池老化模型。其次,设计了基于规则的多模式EMS,在此基础上,为了进一步降低系统的等效氢耗,并延长其使用寿命,基于多目标白鲸算法(MOBWO)对EMS参数进行优化。再次,为了使所设计的EMS适用于不同的路况,提出了基于长短期记忆网络(LSTM)的驾驶路况实时分类方法,旨在根据分类结果切换EMS的控制参数以达到最优效果。最后,在仿真平台上对所提算法进行分析。结果表明:与基于规则的方法相比,所提方法氢耗量降低了2.3%,燃料电池的老化程度降低了1.02%,验证了所提EMS能够有效降低混合系统的燃料消耗,并且能够延缓燃料电池老化,从而提升了系统的经济性和耐久性。 展开更多
关键词 燃料电池 锂电池 混合动力系统 能量管理策略 多目标白鲸优化 lstm神经网络 路况分类
在线阅读 下载PDF
大坝运行安全在线监控IPSO-LSTM模型研究
20
作者 戴霈霖 李艳玲 周子玉 《人民长江》 北大核心 2024年第12期229-236,共8页
构建合理在线监控模型是实时掌控大坝安全性态的重要保障。针对LSTM模型受多参数组合影响、最优参数泛化能力弱、人工选取参数难的问题,深入分析了学习率、分块尺寸、最大迭代次数和隐藏层单元数等关键参数对大坝安全在线监控模型精度... 构建合理在线监控模型是实时掌控大坝安全性态的重要保障。针对LSTM模型受多参数组合影响、最优参数泛化能力弱、人工选取参数难的问题,深入分析了学习率、分块尺寸、最大迭代次数和隐藏层单元数等关键参数对大坝安全在线监控模型精度的影响规律,提出了融合非线性惯性权重、收缩因子及柯西扰动项的粒子群优化改进算法(IPSO),并与LSTM模型耦合构建了针对大坝安全监控的IPSO-LSTM模型。工程校验表明:该模型能自动搜寻最优参数、精度高、鲁棒性强,适用于不同类型、不同长度的大坝安全监测数据序列,相对人工定参的LSTM模型误差至少能降低30%。相关经验可为大坝运行安全在线监控提供技术支持。 展开更多
关键词 大坝安全 监控模型 粒子群优化改进算法(IPSO) 长短时神经网络(lstm) 自动寻优
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部